首页> 外文学位 >Quantifying multi-scale network process-structure-property relationships in polymer materials through scattering data decomposition .
【24h】

Quantifying multi-scale network process-structure-property relationships in polymer materials through scattering data decomposition .

机译:通过散射数据分解量化聚合物材料中的多尺度网络过程-结构-性质关系。

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present an optimization-based methodology to identify network process-structure-property relationships in multiphase polymeric materials. Control over enhanced properties of polymer materials requires knowledge of the local (nanoscale) and global (microscale) structure of the crystalline and amorphous domains present in the material. A quantitative description of the structure of these domains can be provided by x-ray and neutron scattering techniques, which probe ordered density fluctuations in a material. An observed scattered intensity signature is then modeled as the weighted sum of linearly independent components, where the profile of a component depends on the shape, aggregation, and extent of fundamental structural units present in the material. We therefore seek to simultaneously extract the shape of these components and their contribution to the observed intensity, through decomposition of process-dependent scattering datasets, without assumptions on polymer structural geometry. This decomposition methodology is based on network component analysis (NCA), a nonlinear program (NLP) used to generate a unique, globally optimal matrix decomposition. This program is then reformulated as a mixed-integer nonlinear program (MINLP) to overcome the limitation that NCA requires a priori knowledge of the connectivity between the experimental and underlying component signatures. The methodology is then applied in the study of ethylene/alpha-olefin copolymer crystallization from the melt using wide- and small-angle x-ray scattering (WAXS/SAXS) data, where the variables of interest are time, side chain branch length and isothermal crystallization temperature. The validity of the decomposition is first confirmed through extraction of well-known amorphous and crystalline component signatures present in WAXS signatures. It is then applied in the decomposition of SAXS data to quantify the structural evolution of crystalline and amorphous domains at the nanometer scale. Finally, a model study of amphiphilic triblock copolymers in solution is carried out using simulated small-angle neutron scattering (SANS) data in order to extract components based solely on knowledge of where density contrast matching occurs.
机译:在这项工作中,我们提出了一种基于优化的方法来识别多相聚合物材料中的网络过程-结构-性能关系。控制聚合物材料的增强性能需要了解材料中存在的结晶域和非晶域的局部(纳米级)和全局(微米级)结构。可以通过x射线和中子散射技术提供对这些域结构的定量描述,该技术可以探测材料中有序的密度波动。然后将观察到的散射强度特征建模为线性独立成分的加权总和,其中成分的分布取决于材料中基本结构单元的形状,聚集和程度。因此,我们寻求通过分解与过程有关的散射数据集来同时提取这些组件的形状及其对所观察到的强度的贡献,而不用假设聚合物的结构几何形状。这种分解方法基于网络组件分析(NCA),这是一种用于生成唯一的全局最优矩阵分解的非线性程序(NLP)。然后将该程序重新编写为混合整数非线性程序(MINLP),以克服NCA需要先验知识了解实验和基础组件签名之间的连通性的限制。然后将该方法应用于使用广角和小角X射线散射(WAXS / SAXS)数据研究熔体中乙烯/α-烯烃共聚物的结晶,其中感兴趣的变量是时间,侧链支链长度和等温结晶温度。首先通过提取WAXS签名中存在的众所周知的非晶和晶体成分签名来确认分解的有效性。然后将其应用于SAXS数据的分解,以量化纳米级晶体和非晶域的结构演变。最后,使用模拟的小角度中子散射(SANS)数据对溶液中的两亲性三嵌段共聚物进行了模型研究,以便仅基于发生密度对比匹配的知识来提取组分。

著录项

  • 作者

    Tolle, Ian.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Chemical.;Engineering System Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号