首页> 中文学位 >新型拱壳结构的开发研制
【6h】

新型拱壳结构的开发研制

代理获取

目录

文摘

英文文摘

CHAPTER 1 PREFACE

§1.1 Introduction of Arch-shaped Corrugated Shell Roof

1.1.1 Applications of the structure

1.1.2 Automatic building machine (ABM) and operations instructions

1.1.3 Erection method of ACSR

§ 1.2 The Structure Characteristic of Arch-Shaped Corrugated Shell Roof

§ 1.3 The Collapse Accidents of ACSR and Its Existing Problems

§ 1.4 The Conception of Arch-Shaped Non-corrugated Shell Roof (ANSR) and The Realization of The Roof

§ 1.5 The Study Status of ACSR

§ 1.6 The Significance of The Subject

§ 1.7 Work Done in This Thesis

CHAPTER 2 NONLINERA FE EQUATIONS SOLUTION TECHNOLOGY

§ 2.1 Introduction to The Nonlinear FEM Theory

2.1.1 Finite deformation theory in nonlinear FEM

2.1.2 Stresses analysis in nonlinear FEM

2.1.3 Constitutive equation

§2.2 Virtual Work Principle of Nonlinear FEM

2.2.1 T.L formulas

2.2.2U.L formulas

2.2.3 The comparison between U.L method and T.L method

§ 2.3 Path-following Technology

§ 2.4 Comments on The Computational Method on Nonlinear Equation

§ 2.5 Conclusions

CHAPTER 3 THE BEARING CAPACITY RESEARCH ON ACSR

§ 3.1 Automatic FEM Mesh Generation System

3.1.1 Introduction of automatic FEM mesh generation

3.1.2 Automatic FEM mesh nodes coordinates generation

3.1.3 The numeration of the nodes and elements, elements information

3.1.4 The definition of super element and stitches between boundaries

3.1.5 The program of FE meshes automatic generation system procedure

§ 3.2 Shell FE Model

3.2.1 Assumptions

3.2.2 Strain displacement matrix

3.2.3 Elasto-plastic stress-strain relations

3.2.4 Tangential stiffness matrix

§ 3.3 Main Factors to Infiuent on The Bearing Capacity

3.3.1 The thickness of sheet effect on the bearing capacity ACSR

3.3.2 The span effect on the bearing capacity of ACSR

3.3.3 The rise-to-span ratio effect on the bearing capacity of ACSR.

§ 3.4 Conclusions

CHAPTER 4 THE BEARING CAPACITY OF ARCH-SHAPED NON-CORRUGATED SHELL ROOF

§ 4.1 The Shape-forming Method and Construction Technology of Arch-shaped Non-corrugated Shell Roof

§ 4.2 Thin-walled Beam Theory of ANSR

4.2.1 Introduction of thin-walled bar

4.2.2 Some fundamental concepts about the thin-walled beam

4.2.3 The shell forces in the thin-walled bars

4.2.4 The thin-walled bar forces

§ 4.3 The Nonlinear FEM Formulas for The Thin-walled Beam

§ 4.4 Main Factors to Influent on The Bearing Capacity

4.4.1 The thickness of sheet effect on the bearing capacity ANSR

4.4.2 The span effect on the bearing capacity of ANSR

4.4.3 The rise-to-span ratio effect on the bearing capacity of ANSR

4.4.4 The material effect on the bearing capacity of ANSR

§ 4.5 The Bearing Capacity Comparison between ACSR and ANSR

§ 4.6 Numerical Regression Formula for The Bearing Capacity of ANSR

§ 4.7 Conclusions

CHAPTER 5 THE WIND PRESSURE ON THE ANSR

§ 5.1 The Fundament of The Fluid Mechanics

5.1.1 Continuity equation

5.1.2 Momentum equations

5.1.3 Navier-Stokes equation

§ 5.2 Reynolds Equation and Reynolds Stress Turbulence Model

5.2.1 Mean N-S equation

5.2.2 The Reynolds stress and turbulence energy transportation equation

5.2.3 Turbulence model

§ 5.3 Computational Model

§ 5.4 2-D Model of Arc-shaped Roof in CFD

§ 5.5 Conclusion

CHAPTER 6 THE DYNAMICS ANALYSIS OF ANSR

§ 6.1 The Wind Load and The Simulation of The Fluctuating Wind Velocity

6.1.1 Power spectrum density function of fluctuating wind pressure

6.1.2 Power spectrum density function of fluctuating wind load

6.1.3 The simulation of wind load

6.1.4 The solution method of dynamics equilibrium equation.

§ 6.2 The theory of dynamic stability

§ 6.3 The dynamics stability analysis of ANSR

§ 6.4 Conclusions

CHAPTER 7 CONCLUSIONS AND FURTHER RESEARCH

§ 7.1 Conclusions

§ 7.2 Further Research

APPENDIXⅠ

APPENDIXⅡ

REFERENCES

ACKNOWLEDGEMENT

展开▼

摘要

建筑结构中的褶板一般是利用其强轴方向来承载,但波纹拱壳结构恰恰相反.拱形结构的一个重要受力特点就是沿拱轴方向上,存在很大的轴力和一部分弯矩,而榴板的弱轴方向恰恰落在这个方向上.这样波纹拱壳主要是以褶板的弱轴方向来承受弯矩和轴力.这在受力机理上是不合理的.波纹的存在对波纹拱壳的承载力起了削弱的作用.该文提出了改进这种结构的构思—无波纹拱壳结构.确定结构的承载力是个比复杂的问题.因为它是与结构的稳定性和材料强度有关的.对于传统的钢结构设计,结构的强度和稳定性一般是分开考虑的.对于拱壳这种非线性结构,传统的稳定理论有一定的局限性,该文在处理这个问题时,采用的是平衡路径的全过程跟踪分析的方法.这样做的好处是它可以把结构的强度,稳定性和刚度的变化历程表示的清清楚楚,从而进一步确定整个结构的承载力.为了考虑波纹对整个结构的影响,该文作者开发了波纹拱壳的有限元网格自动划分程序.在细小的波纹上面划分网格来考虑波纹的影响.同时考虑了影响波纹拱壳承载力的主要因素.对于无波纹拱壳,一般认为是一种二维受力结构.在考虑薄壁杆件的特性的基础上、该文运用薄壁秆件理论来模拟整个结构.在该文中,引入了一种薄壁秆件单元,对其进行结构计算.并开发了设计无波纹拱壳的程序.该文还将两种结构做了对比,同时该文考虑了影响无波纹拱壳的承载力的主要因素.并对其承载力进行了数值回归.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号