【24h】

Learning Adapted Dictionaries for Geometry and Texture Separation

机译:学习适用于几何和纹理分离的字典

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a new method for image separation into a linear combination of morphological components. This method is applied to decompose an image into meaningful cartoon and textural layers and is used to solve more general inverse problems such as image inpainting. For each of these components, a dictionary is learned from a set of exemplar images. Each layer is characterized by a sparse expansion in the corresponding dictionary. The separation inverse problem is formalized within a variational framework as the optimization of an energy functional. The morphological component analysis algorithm allows to solve iteratively this optimization problem under sparsity-promoting penalties. Using adapted dictionaries learned from data allows to circumvent some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial to capture complex texture patterns.
机译:本文提出了一种将图像分离为形态成分线性组合的新方法。该方法用于将图像分解为有意义的卡通和纹理层,并用于解决更常见的逆问题,例如图像修复。对于这些组件中的每个组件,都从一组示例图像中学习字典。每层的特征是在相应字典中的稀疏扩展。分离逆问题在变分框架内形式化为能量功能的优化。形态成分分析算法可以迭代地解决稀疏性惩罚下的优化问题。使用从数据中学到的经过改编的词典可以避免固定词典所面临的一些困难。数值结果表明,这种适应性对于捕获复杂的纹理图案确实至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号