首页> 外文会议>Wavelets XII pt.2; Proceedings of SPIE-The International Society for Optical Engineering; vol.6701 pt.2 >Affine Scaling Transformation Algorithms for Harmonic Retrieval in a Compressive Sampling Framework
【24h】

Affine Scaling Transformation Algorithms for Harmonic Retrieval in a Compressive Sampling Framework

机译:压缩采样框架中谐波检索的仿射尺度变换算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate the use of the Affine Scaling Transformation (AST) family of algorithms in solving the sparse signal recovery problem of harmonic retrieval for the DFT-grid frequencies case. We present the problem in the more general Compressive Sampling/Sensing (CS) framework where any set of incomplete, linearly independent measurements can be used to recover or approximate a sparse signal. The compressive sampling problem has been approached mostly as a problem of e_1: norm minimization, which can be solved via an associated linear programming problem. More recently, attention has shifted to the random linear projection measurements case. For the harmonic retrieval problem, we focus on linear measurements in the form of: consecutively located time samples, randomly located time samples, and (Gaussian) random linear projections. We use the AST family of algorithms which is applicable to the more general problem of minimization of the e_p p-norm-like diversity measure that includes the numerosity (p=0), and the e_1 norm (p=l). Of particular interest in this paper is to experimentally find a relationship between the minimum number M of measurements needed for perfect recovery and the number of components K of the sparse signal, which is N samples long. Of further interest is the number of AST iterations required to converge to its solution for various values of the parameter p. In addition, we quantify the reconstruction error to assess the closeness of the AST solution to the original signal. Results show that the AST for p=l requires 3-5 times more iterations to converge to its solution than AST for p=0. The minimum number of data measurements needed for perfect recovery is approximately the same on the average for all values of p, however, there is an increasing spread as p is reduced from p=l to p=0. Finally, we briefly contrast the AST results with those obtained using another e-1 minimization algorithm solver.
机译:在本文中,我们研究了仿射尺度变换(AST)系列算法在解决DFT电网频率情况下谐波检索的稀疏信号恢复问题中的使用。我们在更通用的压缩采样/传感(CS)框架中提出了问题,在该框架中,可以使用任意一组不完整,线性独立的测量来恢复或近似稀疏信号。压缩采样问题主要作为e_1:范数最小化问题来解决,可以通过相关的线性规划问题来解决。最近,注意力已经转移到随机线性投影测量的情况。对于谐波检索问题,我们将重点放在以下形式的线性测量上:连续放置的时间样本,随机放置的时间样本和(高斯)随机线性投影。我们使用AST系列算法,该算法适用于更普遍的最小化e_p p范式多样性度量的问题,该度量包括数字(p = 0)和e_1范数(p = 1)。本文特别感兴趣的是通过实验找到完美恢复所需的最小测量次数M与稀疏信号的分量K的数量之间的关系,该稀疏信号的长度为N个样本。进一步令人感兴趣的是收敛到针对参数p的各种值的解所需的AST迭代次数。此外,我们量化重建误差以评估AST解与原始信号的接近度。结果表明,与p = 0时的AST相比,p = 1时的AST需要多3-5倍的迭代才能收敛到其解。对于所有p值,完美恢复所需的最小数据测量数量在平均值上大致相同,但是,随着p从p = 1减少到p = 0,散布增加了。最后,我们将AST结果与使用其他e-1最小化算法求解器获得的结果进行了简要对​​比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号