首页> 外文会议>Visualization, imaging, and image processing >PERFORMANCE ANALYSIS OF PARTITIONING-BASED AND SUBPATTERN-BASED APPROACHES ON IRIS RECOGNITION
【24h】

PERFORMANCE ANALYSIS OF PARTITIONING-BASED AND SUBPATTERN-BASED APPROACHES ON IRIS RECOGNITION

机译:IRIS识别的基于分区和基于子类别的方法的性能分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the performance analysis of partitioning-based and subpattern-based methods on iris recognition without applying the traditional iris detection methods. We propose a simple and efficient partitioning-based approach for iris recognition using non-overlapped partitions on the iris images and applying feature extraction methods on these partitions to recognize the irises. These partitions are individually experimented and then the output of each partition is combined using a multiple classifier combination method. In this respect, original PCA and subspace LDA methods are used as feature extractors with the combination of the preprocessing techniques of histogram equalization and mean-and-variance normalization in order to nullify the effect of illumination changes which are known to significantly degrade recognition performance. The recognition performance of the partitioning-based approaches is compared with the performance of subpattern-based PCA and subpattern-based subspace LDA approaches in order to demonstrate the performance differences and similarities between these two types of approaches. To be consistent with the research of others, our work has been tested on three iris databases namely CASIA, UPOL and UBIRIS. The experiments are performed on these three iris databases to demonstrate the recognition performances of the proposed partitioning-based approaches, subpattern-based approaches and traditional PCA and subspace LDA approaches.
机译:本文介绍了基于分割和基于子模式的方法在虹膜识别上的性能分析,而没有应用传统的虹膜检测方法。我们提出了一种基于虹膜识别的简单有效的基于分区的方法,该方法使用虹膜图像上的非重叠分区,并在这些分区上应用特征提取方法以识别虹膜。对这些分区进行单独实验,然后使用多重分类器组合方法组合每个分区的输出。在这方面,原始PCA和子空间LDA方法结合了直方图均衡和均值和方差归一化预处理技术,用作特征提取器,以消除已知会大大降低识别性能的照明变化的影响。将基于分区的方法的识别性能与基于子模式的PCA和基于子模式的子空间LDA方法的性能进行比较,以证明这两种方法之间的性能差异和相似性。为了与其他研究保持一致,我们的工作已经在三个虹膜数据库(CASIA,UPOL和UBIRIS)上进行了测试。在这三个虹膜数据库上进行了实验,以证明所提出的基于分区的方法,基于子模式的方法以及传统PCA和子空间LDA方法的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号