首页> 外文会议>Visualization and data analysis 2012 >Guided Text Analysis Using Adaptive Visual Analytics
【24h】

Guided Text Analysis Using Adaptive Visual Analytics

机译:使用自适应视觉分析的引导文本分析

获取原文
获取原文并翻译 | 示例

摘要

This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system-called Gryffin-that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Security's Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information.
机译:本文展示了使用半监督机器学习技术增强交互式可视化效果以改善对文本信息的搜索和分析中重要关联和见解的发现的希望。更具体地说,我们开发了一个名为Gryffin的系统,该系统拥有一套独特的技术,这些技术可以促进与索引化的,与国家基础设施相关的出版物的集合上不断变化的分析问题有关的个性化调查。 Gryffin客户端通过焦点+上下文记录列表,时间轴,术语频率视图和多个协调视图来托管搜索结果的动态显示。此外,当分析人员与显示器进行交互时,将记录这些交互并将其用于标记搜索记录。这些标记的记录随后用于驱动半监督机器学习算法,该算法对未标记的搜索记录进行重新排序,以便将可能相关的记录移至记录列表的顶部。在国土安全部融合中心遇到的日常任务中描述了格兰芬,我们正在与他们合作开发它。最终的系统能够解决分析人员的信息超载问题,而信息超载可能直接归因于在文本信息的搜索和调查分析中必须解决的大量信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号