首页> 外文会议>String Processing and Information Retrieval; Lecture Notes in Computer Science; 4209 >TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization
【24h】

TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization

机译:TreeBoost.MH:一种用于多标签分层文本分类的增强算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose TreeBoost.MH, an algorithm for multi-label Hierarchical Text Categorization (HTC) consisting of a hierarchical variant of AdaBoost.MH. TreeBoost.MH embodies several intuitions that had arisen before within HTC: e.g. the intuitions that both feature selection and the selection of negative training examples should be performed "locally", i.e. by paying attention to the topology of the classification scheme. It also embodies the novel intuition that the weight distribution that boosting algorithms update at every boosting round should likewise be updated "locally". We present the results of experimenting TreeBoost.MH on two HTC benchmarks, and discuss analytically its computational cost.
机译:在本文中,我们提出了TreeBoost.MH,这是一种由AdaBoost.MH的分层变体组成的多标签分层文本分类(HTC)算法。 TreeBoost.MH体现了HTC之前出现的几种直觉:直觉是特征选择和否定训练示例的选择都应该在“本地”执行,即通过注意分类方案的拓扑。这也体现了新颖的直觉,即在每个助推回合中,助推算法更新的权重分布同样应“本地”更新。我们介绍了在两个HTC基准上测试TreeBoost.MH的结果,并分析了其计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号