首页> 外文会议>SPIE biophotonics Australasia >Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices
【24h】

Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

机译:微型视频显微镜系统,用于使用基于微流体芯片的设备进行近实时水质生物监测

获取原文
获取原文并翻译 | 示例

摘要

Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.
机译:生物监测研究利用敏感的生物监测生物的生物反应来快速检测不利的环境变化,例如存在物理化学应激源和毒素。诸如小型水生无脊椎动物游动方式变化等行为反应正在作为监测水生污染的敏感终点而出现。尽管行为反应无法提供有关水样品中有毒物质的确切类型或强度的信息,但它们可以提供比致命性终点(例如死亡率)高几个数量级的灵敏度。尽管对前哨生物进行行为生物测试的优势,但由于缺乏专用的自动视频显微镜系统,其在实时和近实时水质监测中的广泛应用受到了限制。当前的行为分析系统主要依赖于静态测试条件和手动程序,这既费时又费力。跟踪和精确定量多种小型水生生物的运动活动需要高分辨率的光学数据记录。由于快速移动的动物的体型较小,并且并非专门为视频数据记录而设计的培养容器的局限性,因此,这常常会带来问题。在这项工作中,我们利用了小型CMOS相机,高分辨率光学器件和生物微流体技术的最新进展,以利用小型无脊椎动物的机车活动开发近实时水质感测。我们提出了高分辨率的时间分辨视频记录系统和高通量微型灌注生物微流体平台的概念验证的集成,用于光学跟踪海洋甲壳动物卤虫无节幼体。初步数据表明,Artemia sp。展示了对有毒物质暴露的快速改变。视频显微镜和生物微流体平台的结合促进了快速移动物体的直接记录。我们设想,这种系统有望扩大规模,以在机器人生物监测设施中执行高通量水质检测。

著录项

  • 来源
    《SPIE biophotonics Australasia》|2016年|100131r.1-100131r.7|共7页
  • 会议地点 Adelaide(AU)
  • 作者单位

    The BioMEMS Research Group, School of Science, RMIT University, Australia;

    The BioMEMS Research Group, School of Science, RMIT University, Australia;

    Environment Department, University of York, UK;

    Ecotoxicology Research Group, School of Science, RMIT University, Australia,Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, Australia;

    The BioMEMS Research Group, School of Science, RMIT University, Australia,Centre for Environmental Sustainability and Remediation (EnSuRe), RMIT University, Melbourne, Australia,Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Australia;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biomicrofiuidics; Lab-on-a-Chip; laser; fabrication; polymer; Artemia franciscana; toxicity; behavior;

    机译:生物微流体;芯片实验室激光;制造;聚合物; Franciscana卤虫;毒性;行为;
  • 入库时间 2022-08-26 13:45:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号