首页> 外文会议>SPIE biophotonics Australasia >Applications of stereolithography for rapid prototyping of biologically-compatible chip-based physiometers.
【24h】

Applications of stereolithography for rapid prototyping of biologically-compatible chip-based physiometers.

机译:立体光刻技术在生物相容性基于芯片的生理计的快速原型制作中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing iving zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.
机译:尽管对生物医学界的需求不断增长且应用众多,但与其他生物微流体领域相比,用于小模型生物的微流体设备的发展有限。造成这种停滞的主要原因是难以进行毫米尺度的原型设计以及大型后生生物所需的高纵横比设备。在这种情况下,标准光刻是费时的过程,不容易适应垂直尺寸大于1mm的模具的制造。此外,由于成本和对专用洁净室设备的需求,大多数愿意寻求定制开发自己的基于芯片的平台的生物医学实验室仍然基本上无法获得光刻技术。在这项工作中,我们介绍了高清增材制造系统在制造用于软光刻的3D打印模具中的应用。 3D打印与PDMS复制成型的结合似乎是微流控系统的替代方案,该系统可产生快速且经济高效的原型制作流程。我们研究了3D打印模具和PDMS复制品的重要方面,例如几何精度和表面拓扑。我们的结果表明,SLA技术可用于快速,准确地制造微流控设备,以捕获毫米大小的标本,例如活的斑马鱼幼虫。我们将新的制造方法应用于概念验证的原型设备中,该设备能够捕获并固定成年幼的斑马鱼幼虫,以记录心脏毒性实验中的心率变化。

著录项

  • 来源
    《SPIE biophotonics Australasia》|2016年|1001326.1-1001326.6|共6页
  • 会议地点 Adelaide(AU)
  • 作者单位

    The BioMEMS Research Group, School of Sciences, RMIT University, Melbourne, Australia;

    The BioMEMS Research Group, School of Sciences, RMIT University, Melbourne, Australia;

    The Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia;

    The BioMEMS Research Group, School of Sciences, RMIT University, Melbourne, Australia,Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Australia;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    millifluidics; Lab-on-a-Chip; stereolithography; 3D; printing; replica; molding; soft lithography; PDMS;

    机译:毫流体芯片实验室立体光刻; 3D;印刷复制品;成型软光刻数据管理系统;
  • 入库时间 2022-08-26 13:45:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号