首页> 外文会议>Society of Tribologists and Lubrication Engineers annual meeting and exhibition 2010 >AFM AND IR STUDIES OF MOLECULAR ASSEMBLIES ON SILICA NANOASPERITIES FOR FRICTION MODIFICATION
【24h】

AFM AND IR STUDIES OF MOLECULAR ASSEMBLIES ON SILICA NANOASPERITIES FOR FRICTION MODIFICATION

机译:分子筛的原子力显微镜的原子力显微镜和红外光谱研究

获取原文
获取原文并翻译 | 示例

摘要

Controlling friction, adhesion and wear of surfaces is of key importance to the proper function of micro-electromechanical systems (MEMS) devices. As the surfaces of these devices often exhibit nanoasperities on the order of 10 - 20 nm in dimension, the interactions between these nanoscopic asperities during intentional or intermittent contact will dominate the tribological properties of the surfaces. We have developed a simple platform on which molecular assemblies may be investigated on surfaces with controlled nanoscopic roughness. [1] Here, self-assembled monolayers (SAMs) of organosilanes on surfaces of controlled roughness have been examined by FTIR [2] and AFM to explore how film assembly and disorder impact friction and wear at these interfaces as a function of molecular chain length (C_8 - C_(18)) and asperity curvature. Importantly, disordered layers assembled on asperities can intercalate solvent molecules and act a means to store recoverable lubricant molecules, allowing for interfaces to be designed that will yield a slow release of lubricant into a wearing interface, to enable self-healing surfaces that exhibit reduced friction and wear. Here we have found that the uptake of short-chain alcohols by organosilane SAMs on silica nanoasperities yields films with reduced friction and enhanced resistance to wear.
机译:控制表面的摩擦,粘附和磨损对于微机电系统(MEMS)设备的正常功能至关重要。由于这些装置的表面通常表现出尺寸为10-20 nm的纳米级不规则性,因此在有意或间歇性接触期间,这些纳米级不规则性之间的相互作用将主导表面的摩擦学性能。我们开发了一个简单的平台,可以在该平台上研究具有受控纳米粗糙度的表面上的分子组装。 [1]此处,FTIR [2]和AFM已检查了粗糙度受控的表面上有机硅烷的自组装单分子层(SAMs),以研究薄膜组装和无序如何影响这些界面上的摩擦和磨损与分子链长度的关系。 (C_8-C_(18))和凹凸曲率。重要的是,组装在粗糙表面上的无序层可以插入溶剂分子,并起到存储可回收润滑剂分子的作用,从而允许设计界面,使润滑剂缓慢释放到磨损的界面中,从而实现具有减少摩擦的自修复表面和磨损。在这里,我们发现有机硅烷SAMs在二氧化硅纳米颗粒上吸收短链醇会产生具有降低的摩擦力和增强的耐磨性的薄膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号