【24h】

Characterizing reliability of multilayer PZT actuators

机译:表征多层PZT执行器的可靠性

获取原文
获取原文并翻译 | 示例

摘要

Many new applications are emerging for piezoelectric ceramics including adaptive structures, active-flow-control devices, and vibration and noise suppression systems. Additionally, there are opportunities to use these devices in the biomedical field for miniature pumps, ultrasonic surgical tools, micro-needle arrays, and nanorobotics. In each of these instances, actuator stability is critical, representing a significant challenge for piezoelectric ceramic materials. In particular, the properties of lead zirconate titanate (PZT) have been found to degrade, often significantly, during continuous operation due to a combination of domain pinning, relaxation of interfacial stress, and, in the worst cases, micro-crack formation. This degradation, referred to as actuator fatigue, can be even more pronounced when high voltages are used to achieve maximum displacement or more complex actuator designs are required. For example, multilayer actuators, such as co-fired stacks, are important for many emerging applications and are now being produced with very small physical dimensions, lowering power requirements. However, multilayer components may be highly susceptible to long-term fatigue due to the large number of interfaces involved in their configuration. In this work, we report a method for rapidly characterizing the reliability of multilayer PZT actuators by monitoring degradation in switching polarization over time. To verify this approach, a series of miniature (3 mm x 3 mm x 2 mm) multilayer actuators were characterized over 1 million cumulative cycles. These actuators were produced commercially from soft PZT materials, and the sintering temperature was varied to tailor the ceramic microstructure and performance characteristics. Evaluation of cyclic polarization degradation was found to be an effective method for illuminating differences among the different actuators tested, as well as serving to predict their long-term resistance to fatigue.
机译:压电陶瓷正在出现许多新的应用,包括自适应结构,有源流量控制设备以及振动和噪声抑制系统。此外,还有机会在生物医学领域中将这些设备用于微型泵,超声外科手术工具,微针阵列和纳米机器人。在每种情况下,致动器的稳定性都是至关重要的,这对压电陶瓷材料来说是一个巨大的挑战。特别地,由于域钉扎,界面应力的松弛以及在最坏的情况下微裂纹的形成,已发现钛酸锆钛酸铅(PZT)的性能通常在连续操作期间会显着降低。当使用高电压实现最大位移或需要更复杂的执行器设计时,这种退化(称为执行器疲劳)甚至会更加明显。例如,多层致动器,例如共烧烟囱,对于许多新兴应用很重要,并且现在以很小的物理尺寸生产,从而降低了功率要求。但是,由于多层组件的结构涉及大量界面,因此它们可能极易受到长期疲劳的影响。在这项工作中,我们报告了一种通过监视开关极化随时间的退化来快速表征多层PZT执行器可靠性的方法。为了验证这种方法,对一系列微型(3 mm x 3 mm x 2 mm)多层执行器进行了超过一百万次累积循环的表征。这些执行器是由柔软的PZT材料商业生产的,并且改变了烧结温度以适应陶瓷的微观结构和性能特征。发现循环极化退化的评估是一种有效的方法,可以阐明测试的不同执行器之间的差异,并有助于预测其长期耐疲劳性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号