【24h】

OBJECT EXTRACTION AND DEPTH RECOVERY FROM STEREO IMAGE PAIRS USING A NEURAL NETWORK BASED PIXELCLASSIFICATION METHOD

机译:基于神经网络的像素分类方法从立体图像对中提取物体并进行深度恢复

获取原文
获取原文并翻译 | 示例

摘要

The present research deals with depth recovery by object extraction and tracking in stereo-image pairs. A Self Organizing Multi Layer Perceptron is developed to extract object masks from the left image by classifying foreground and background pixels. Subsequently, K-means clustering is employed on the foreground pixels to find the number of objects in the scene. For each object, a modified Block-matching algorithm is applied on the corresponding right image to calculate the disparity. The depth of the object is then derived from the disparity by using triangulation. The combination of three methods - Self Organizing MLP, K-means, and Block Matching for depth recovery is useful for automating the process of multi object extraction. This approach can be applied to 3D reconstruction, autonomous guidance, robotic vision, and virtual reality.
机译:本研究通过立体图像对中的对象提取和跟踪来处理深度恢复。通过对前景和背景像素进行分类,开发了自组织多层感知器以从左侧图像提取对象蒙版。随后,对前景像素进行K均值聚类,以找到场景中的对象数量。对于每个对象,将修改的块匹配算法应用于相应的右图像以计算视差。然后,通过使用三角剖分从视差中得出对象的深度。三种方法的组合-自组织MLP,K均值和用于深度恢复的块匹配对于自动执行多对象提取过程很有用。这种方法可以应用于3D重建,自主导航,机器人视觉和虚拟现实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号