首页> 外文会议>Seventeenth International Workshop on Rare Earth Magnets and Their Applications Aug 18-22, 2002 Newark, Delaware, USA >EFFECT OF Zr ON THE MICROSTRUCTURE, MAGNETIC DOMAIN STRUCTURE, MICROCHEMISTRY AND MAGNETIC PROPERTIES IN Sm(Co_(bal), Cu_(0.088), Fe_(0.01), Zr_x)_(8.5) MAGNETS
【24h】

EFFECT OF Zr ON THE MICROSTRUCTURE, MAGNETIC DOMAIN STRUCTURE, MICROCHEMISTRY AND MAGNETIC PROPERTIES IN Sm(Co_(bal), Cu_(0.088), Fe_(0.01), Zr_x)_(8.5) MAGNETS

机译:Zr对Sm(Co_(bal),Cu_(0.088),Fe_(0.01),Zr_x)_(8.5)磁体的微观结构,磁畴结构,微化学和磁性的影响

获取原文
获取原文并翻译 | 示例

摘要

The effect of Zr on the microstructure, microchemistry, and coercivity of Sm(Co_(bal), Cu_(0.088), Fe_(0.01), Zr_x)_(8.5) (x=0-0.10) magnets has been systematically investigated. The presence of Zr is responsible for the formation of lamella structure. With increasing Zr content, a cellular-like structure gradually develops while the density of lamella phase increases. A proper Zr content (0.015-0.060 at%) is a key to form a complete and uniform cellular structure. Less Zr content leads to incomplete cellular structure, while more Zr content leads to inhomogeneous cellular structure and formation of 2:7 phases. Microchemistry data show that the Cu content in the cell boundaries in the magnet with 0.04 at% Zr is higher than that with 0.015 at% Zr, although both samples have similar microstructure morphology. Higher coercivity is obtained in samples where the domain walls are pinned at cell boundaries. For the Zr-free or higher Zr samples, domain walls nucleated at grain boundaries are responsible for the reduction in coercivity. During isothermal aging, at a fixed Zr content, the coercivity is developed with increasing aging time. In higher Zr content sample the coercivity reaches its maximum value early. For lower Zr content samples, both the cell size and density of lamella phase significantly increase with aging time. For the higher Zr content sample, with the exception of a slight increase of cell size, the structure morphology is nearly the same, but the Cu content in the cell boundaries increases with aging time. These results show clearly that Zr plays an important role in the formation of a uniform cellular structure with the right microchemistry and that a critical amount of Zr is needed for the optimum magnetic properties.
机译:系统地研究了Zr对Sm(Co_(bal),Cu_(0.088),Fe_(0.01),Zr_x)_(8.5)(x = 0-0.10)磁体的微观结构,微观化学和矫顽力的影响。 Zr的存在负责形成薄片结构。随着Zr含量的增加,蜂窝状结构逐渐发展,而层状相的密度增加。适当的Zr含量(0.015-0.060 at%)是形成完整而均匀的细胞结构的关键。较少的Zr含量导致不完整的细胞结构,而较多的Zr含量导致不均匀的细胞结构和2:7相的形成。微量化学数据显示,尽管两个样品的微观结构形态相似,但Zr为0.04 at%时磁体的晶胞边界中的Cu含量要高于0.015 at%Zr时磁体的晶界中的Cu含量。在将畴壁固定在单元边界处的样品中,可以获得更高的矫顽力。对于无Zr或更高Zr的样品,在晶界成核的畴壁是导致矫顽力降低的原因。在等温时效期间,在固定的Zr含量下,矫顽力随时效时间的增加而发展。在较高Zr含量的样品中,矫顽力会尽早达到最大值。对于较低Zr含量的样品,晶胞相的晶胞尺寸和密度都随老化时间而显着增加。对于较高Zr含量的样品,除了晶胞尺寸略有增加外,其结构形态几乎相同,但晶胞边界中的Cu含量随老化时间的增加而增加。这些结果清楚地表明,Zr在形成具有正确的微化学作用的均匀细胞结构中起着重要作用,并且需要临界量的Zr才能获得最佳的磁性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号