首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >A Markov Random Field Model for Combining Optimum-Path Forest Classifiers Using Decision Graphs and Game Strategy Approach
【24h】

A Markov Random Field Model for Combining Optimum-Path Forest Classifiers Using Decision Graphs and Game Strategy Approach

机译:使用决策图和博弈策略方法组合最优路径森林分类器的马尔可夫随机场模型

获取原文
获取原文并翻译 | 示例

摘要

The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems.
机译:对多个分类器系统的研究包括创建分类器集合和决策的适当组合。为了结合分类器给出的决策,经常使用与固定规则和决策模板有关的方法。因此,在组合方案中通常不考虑分类器决策之间的影响和关系。在本文中,我们提出了一个框架,用于在随机字段模型下使用决策图和游戏策略方法来组合分类器,以获得最终决策。报告了使用提出的模型组合最佳路径森林(OPF)分类器的结果,在使用模拟和真实数据集的实验中获得了良好的性能。结果鼓励将OPF集成和框架结合起来设计多个分类器系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号