首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >A Hypergraph Reduction Algorithm for Joint Segmentation and Classification of Satellite Image Content
【24h】

A Hypergraph Reduction Algorithm for Joint Segmentation and Classification of Satellite Image Content

机译:卫星图像内容的联合分割和分类的超图归约算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a novel hypergraph reduction algorithm, and we evaluate it in an innovative method for joint segmentation and classification of satellite image content. It operates in 3 steps. First, we compute an Image Neighborhood Hypergraph representation (INH). Second, we reduce the INH model and we exploit a morphism from INH to Reduced INH (RINH) to generate superpixels. Then, we perform a superpixels supervised classification according to their features. Our approach is very fast and can deal with great sized images. Its reliability has been tested on several satellite images with comparison to single pixelwise classification.
机译:在本文中,我们介绍了一种新颖的超图归约算法,并以一种新颖的方法对卫星图像内容进行联合分割和分类,对其进行了评估。它分3个步骤运行。首先,我们计算图像邻域超图表示(INH)。其次,我们简化INH模型,并利用从INH到缩减的INH(RINH)的态射来生成超像素。然后,我们根据其特征执行超像素监督分类。我们的方法非常快,可以处理大尺寸的图像。与单像素分类相比,它的可靠性已经在多个卫星图像上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号