【24h】

Prediction of Sequential Values for Debt Recovery

机译:债务回收的顺序值预测

获取原文
获取原文并翻译 | 示例

摘要

The concept of new approach for debt portfolio pattern recognition is presented in the paper. Aggregated prediction of sequential repayment values over time for a set of claims is performed by means of hybrid combination of various machine learning techniques, including clustering of references, model selection and enrichment of input variables with prediction outputs from preceding periods. Experimental studies on real data revealed usefulness of the proposed approach for claim appraisals. The average accuracy was over 93%, much higher than for simplifier methods.
机译:本文提出了债务组合模式识别的新方法的概念。借助一系列机器学习技术的混合组合,可以对一组权利要求随时间的顺序还款额进行汇总预测,包括参考聚类,模型选择以及输入变量与前期预测输出的丰富化。对真实数据的实验研究表明,提出的方法可用于索赔评估。平均精度超过93%,远高于简化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号