首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Improved Online Support Vector Machines Spam Filtering Using String Kernels
【24h】

Improved Online Support Vector Machines Spam Filtering Using String Kernels

机译:使用字符串内核的改进的在线支持向量机垃圾邮件过滤

获取原文
获取原文并翻译 | 示例

摘要

A major bottleneck in electronic communications is the enormous dissemination of spam emails. Developing of suitable filters that can adequately capture those emails and achieve high performance rate become a main concern. Support vector machines (SVMs) have made a large contribution to the development of spam email filtering. Based on SVMs, the crucial problems in email classification are feature mapping of input emails and the choice of the kernels. In this paper, we present thorough investigation of several distance-based kernels and propose the use of string kernels and prove its efficiency in blocking spam emails. We detail a feature mapping variants in text classification (TC) that yield improved performance for the standard SVMs in filtering task. Furthermore, to cope for realtime scenarios we propose an online active framework for spam filtering.
机译:电子通信的主要瓶颈是垃圾邮件的大量传播。开发合适的过滤器以充分捕获那些电子邮件并实现较高的性能成为人们的主要关注点。支持向量机(SVM)为垃圾邮件过滤的发展做出了巨大贡献。基于SVM,电子邮件分类中的关键问题是输入电子邮件的特征映射和内核的选择。在本文中,我们将对几种基于距离的内核进行深入研究,并提出使用字符串内核的方法,并证明其在阻止垃圾邮件方面的效率。我们详细介绍了文本分类(TC)中的功能映射变体,这些变体可提高标准SVM在过滤任务中的性能。此外,为了应对实时情况,我们提出了一个用于垃圾邮件过滤的在线活动框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号