首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Finding Small Consistent Subset for the Nearest Neighbor Classifier Based on Support Graphs
【24h】

Finding Small Consistent Subset for the Nearest Neighbor Classifier Based on Support Graphs

机译:基于支持图寻找最近邻分类器的小一致性子集

获取原文
获取原文并翻译 | 示例

摘要

Finding a minimal subset of objects that correctly classify the training set for the nearest neighbors classifier has been an active research area in Pattern Recognition and Machine Learning communities for decades. Although finding the Minimal Consistent Subset is not feasible in many real applications, several authors have proposed methods to find small consistent subsets. In this paper, we introduce a novel algorithm for this task, based on support graphs. Experiments over a wide range of repository databases show that our algorithm finds consistent subsets with lower cardinality than traditional methods.
机译:几十年来,寻找能够正确分类最近邻分类器训练集的最小对象子集一直是模式识别和机器学习社区的活跃研究领域。尽管在许多实际应用中找到最小一致子集是不可行的,但仍有几位作者提出了一些方法来找到小的一致子集。在本文中,我们基于支持图介绍了用于此任务的新颖算法。在各种存储库数据库上进行的实验表明,与传统方法相比,我们的算法可找到基数较低的一致子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号