【24h】

Semi-supervised Robust Alternating AdaBoost

机译:半监督稳健交替AdaBoost

获取原文
获取原文并翻译 | 示例

摘要

Semi-Supervised Learning is one of the most popular and emerging issues in Machine Learning. Since it is very costly to label large amounts of data, it is useful to use data sets without labels. For doing that, normally we uses Semi-Supervised Learning to improve the performance or efficiency of the classification algorithms.rnThis paper intends to use the techniques of Semi-Supervised Learning to boost the performance of the Robust Alternating AdaBoost algorithm.rnWe introduce the algorithm RADA+ and compare it with RADA, reporting the performance results using synthetic and real data sets, the latter obtained from a benchmark site.
机译:半监督学习是机器学习中最流行和新兴的问题之一。由于标记大量数据非常昂贵,因此使用不带标记的数据集很有用。为此,通常我们使用半监督学习来提高分类算法的性能或效率。并将其与RADA进行比较,使用综合数据和真实数据集报告性能结果,这些数据集是从基准站点获得的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号