【24h】

Particle Swarm Model Selection for Authorship Verification

机译:用于作者身份验证的粒子群模型选择

获取原文
获取原文并翻译 | 示例

摘要

Authorship verification is the task of determining whether documents were or were not written by a certain author. The problem has been faced by using binary classifiers, one per author, that make individual yeso decisions about the authorship condition of documents. Traditionally, the same learning algorithm is used when building the classifiers of the considered authors. However, the individual problems that such classifiers face are different for distinct authors, thus using a single algorithm may lead to unsatisfactory results. This paper describes the application of particle swarm model selection (PSMS) to the problem of authorship verification. PSMS selects an ad-hoc classifier for each author in a fully automatic way; additionally, PSMS also chooses preprocessing and feature selection methods. Experimental results on two collections give evidence that classifiers selected with PSMS are advantageous over selecting the same classifier for all of the authors involved.
机译:作者身份验证是确定文档是否由某个作者撰写的任务。使用二进制分类器(每个作者一个)就面对了这个问题,该分类器对文档的作者条件做出单独的是/否决定。传统上,在构建考虑作者的分类器时使用相同的学习算法。但是,对于不同的作者而言,此类分类器面临的各个问题是不同的,因此使用单个算法可能会导致结果不理想。本文介绍了粒子群模型选择(PSMS)在作者身份验证问题中的应用。 PSMS以全自动方式为每个作者选择一个临时分类器。此外,PSMS还选择预处理和特征选择方法。两个集合的实验结果表明,用PSMS选择的分类器优于为所有相关作者选择相同的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号