首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Recognition and Quantification of Area Damaged by Oligonychus Perseae in Avocado Leaves
【24h】

Recognition and Quantification of Area Damaged by Oligonychus Perseae in Avocado Leaves

机译:鳄梨叶片中多年生小叶菊受损区域的识别和定量

获取原文
获取原文并翻译 | 示例

摘要

The measure of leaf damage is a basic tool in plant epidemiology research. Measuring the area of a great number of leaves is subjective and time consuming. We investigate the use of machine learning approaches for the objective segmentation and quantification of leaf area damaged by mites in avocado leaves. After extraction of the leaf veins, pixels are labeled with a look-up table generated using a Support Vector Machine with a polynomial kernel of degree 3, on the chrominance components of YCrCb color space. Spatial information is included in the segmentation process by rating the degree of membership to a certain class and the homogeneity of the classified region. Results are presented on real images with different degrees of damage.
机译:叶片损伤的测量是植物流行病学研究的基本工具。测量大量叶子的面积是主观且费时的。我们调查使用机器学习方法对鳄梨叶中的螨虫破坏的叶区域进行客观的分割和量化。提取叶脉后,在YCrCb颜色空间的色度分量上,使用由支持向量机生成的具有3级多项式核的查找表标记像素。通过将隶属程度评定为特定类别和分类区域的同质性,将空间信息包括在分割过程中。结果显示在具有不同程度损坏的真实图像上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号