首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >An Enhanced Probabilistic Neural Network Approach Applied to Text Classification
【24h】

An Enhanced Probabilistic Neural Network Approach Applied to Text Classification

机译:一种用于文本分类的增强型概率神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

Text classification is still a quite difficult problem to be dealt with both by the academia and by the industrial areas. On the top of that, the importance of aggregating a set of related amount of text documents is steadily growing in importance these days. The presence of multi-labeled texts and great quantity of classes turn this problem even more challenging. In this article we present an enhanced version of Probabilistic Neural Network using centroids to tackle the multi-label classification problem. We carried out some experiments comparing our proposed classifier against the other well known classifiers in the literature which were specially designed to treat this type of problem. By the achieved results, we observed that our novel approach were superior to the other classifiers and faster than the Probabilistic Neural Network without the use of centroids.
机译:文本分类仍然是学术界和工业界都难以解决的问题。最重要的是,如今,汇总一组相关数量的文本文档的重要性正在稳步增长。多标签文本和大量类的存在使这个问题更具挑战性。在本文中,我们提出了使用质心来解决多标签分类问题的概率神经网络的增强版本。我们进行了一些实验,将我们提出的分类器与专为处理此类问题而专门设计的文献中的其他知名分类器进行了比较。通过获得的结果,我们观察到我们的新颖方法优于其他分类器,并且比不使用质心的概率神经网络要快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号