首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Unsupervised Object Discovery from Images by Mining Local Features Using Hashing
【24h】

Unsupervised Object Discovery from Images by Mining Local Features Using Hashing

机译:通过使用散列挖掘局部特征从图像中进行无监督对象发现

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new methodology for efficiently discovering objects from images without supervision. The basic idea is to search for frequent patterns of closely located features in a set of images and consider a frequent pattern as a meaningful object class. We develop a system for discovering objects from segmented images. This system is implemented by hashing only. We present experimental results to demonstrate the robustness and applicability of our approach.
机译:在本文中,我们提出了一种无需监督即可有效地从图像中发现对象的新方法。基本思想是在一组图像中搜索位置紧密的要素的频繁模式,并将频繁模式视为有意义的对象类。我们开发了一种用于从分割图像中发现对象的系统。该系统仅通过散列实现。我们目前的实验结果来证明我们的方法的鲁棒性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号