首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Generating Video Textures by PPCA and Gaussian Process Dynamical Model
【24h】

Generating Video Textures by PPCA and Gaussian Process Dynamical Model

机译:通过PPCA和高斯过程动力学模型生成视频纹理

获取原文
获取原文并翻译 | 示例

摘要

Video texture is a new type of medium which can provide a continuous, infinitely varying stream of video images from a recorded video clip. It can be synthesized by rearranging the order of frames based on the similarities between all pairs of frames. In this paper, we propose a new method for generating video textures by implementing probabilistic principal components analysis (PPCA) and Gaussian Process Dynamical model (GPDM). Compared to the original video texture technique, video texture synthesized by PPCA and GPDM has the following advantages: it might generate new video frames that have never existed in the input video clip before; the problem of "dead-end" is totally avoided; it could also provide video textures that are more robust to noise.
机译:视频纹理是一种新型的媒体,可以从录制的视频剪辑中提供连续的,无限变化的视频图像流。可以通过基于所有帧对之间的相似性重新排列帧的顺序来合成它。在本文中,我们提出了一种通过实现概率主成分分析(PPCA)和高斯过程动力学模型(GPDM)来生成视频纹理的新方法。与原始视频纹理技术相比,PPCA和GPDM合成的视频纹理具有以下优点:它可能会生成以前在输入视频剪辑中从未存在过的新视频帧;完全避免了“死胡同”的问题。它还可以提供对噪声更鲁棒的视频纹理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号