首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Automatic Choice of the Number of Nearest Neighbors in Locally Linear Embedding
【24h】

Automatic Choice of the Number of Nearest Neighbors in Locally Linear Embedding

机译:局部线性嵌入中最近邻居数目的自动选择

获取原文
获取原文并翻译 | 示例

摘要

Locally linear embedding (LLE) is a method for nonlinear dimensionality reduction, which calculates a low dimensional embedding with the property that nearby points in the high dimensional space remain nearby and similarly co-located with respect to one another in the low dimensional space [1]. LLE algorithm needs to set up a free parameter, the number of nearest neighbors k. This parameter has a strong influence in the transformation. In this paper is proposed a cost function that quantifies the quality of the embedding results and computes an appropriate k. Quality measure is tested on artificial and real-world data sets, which allow us to visually confirm whether the embedding was correctly calculated.
机译:局部线性嵌入(LLE)是一种用于减少非线性维数的方法,该方法计算低维嵌入的特性是高维空间中的邻近点保持在低维空间中,并且彼此之间类似地位于同一位置[1] ]。 LLE算法需要设置一个自由参数,即最近邻居数k。此参数在转换中有很大的影响。本文提出了一种成本函数,该函数可量化嵌入结果的质量并计算适当的k。在人工和现实数据集上对质量度量进行了测试,这使我们可以直观地确认嵌入是否正确计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号