首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Simple Noise Robust Feature Vector Selection Method for Speaker Recognition
【24h】

Simple Noise Robust Feature Vector Selection Method for Speaker Recognition

机译:说话人识别的简单抗噪鲁棒特征向量选择方法

获取原文
获取原文并翻译 | 示例

摘要

The effect of additive noise in a speaker recognition system is known to be a crucial problem in real life applications. In a speaker recognition system, if the test utterance is corrupted by any type of noise, the performance of the system notoriously degrades. The use of a feature vector selection to determine which speech frames are less affected by noise is the purpose in this work. The selection is implemented using the euclidean distance between the Mel features vectors. Results reflect better performance of robust speaker recognition based on selected feature vector, as opposed to unselected ones, in front of additive noise.
机译:在说话者识别系统中,附加噪声的影响是现实应用中的关键问题。在说话者识别系统中,如果测试话语因任何类型的噪声而损坏,则系统的性能会显着下降。这项工作的目的是使用特征向量选择来确定哪些语音帧受噪声影响较小。使用梅尔特征向量之间的欧式距离来实现选择。结果表明,与未选择的特征向量相比,在加性噪声之前,基于选定的特征向量的鲁棒说话人识别性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号