首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Feature Selection Based on Information Theory for Speaker Verification
【24h】

Feature Selection Based on Information Theory for Speaker Verification

机译:基于信息论的说话人验证特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction/selection is an important stage in every speaker recognition system. Dimension reduction plays a mayor roll due to not only the curse of dimensionality or computation time, but also because of the discriminative relevancy of each feature. The use of automatic methods able to reduce the dimension of the feature space without losing performance is one important problem nowadays. In this sense, a method based on mutual information is studied in order to keep as much discriminative information as possible and the less amount of redundant information. The system performance as a function of the number of retained features is studied.
机译:特征提取/选择是每个说话人识别系统中的重要阶段。降维不仅是因为维数或计算时间的限制,而且还因为每个特征的可区分的相关性而发挥了重要作用。如今,使用能够减小特征空间尺寸而又不损失性能的自动方法是一个重要的问题。从这个意义上说,研究了一种基于互信息的方法,以保持尽可能多的区分性信息和较少数量的冗余信息。研究了系统性能与保留特征数量的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号