首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >A Multi-class Kernel Alignment Method for Image Collection Summarization
【24h】

A Multi-class Kernel Alignment Method for Image Collection Summarization

机译:图像采集汇总的多类核对齐方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for involving domain knowledge in the construction of summaries of large collections of images. This is accomplished by using a multi-class kernel alignment strategy in order to learn a kernel function that incorporates domain knowledge (class labels). The kernel function is the basis of a clustering algorithm that generates a subset, the summary, of the image collection. The method was tested with a subset of the Corel image collection using a summarization quality measure based on information theory. Experimental results show that it is possible to improve the quality of the summary when domain knowledge is involved.
机译:本文提出了一种将领域知识纳入大型图像集合摘要构建的方法。这是通过使用多类内核对齐策略来完成的,以便学习包含域知识(类标签)的内核功能。内核功能是聚类算法的基础,该聚类算法生成图像集合的子集(摘要)。使用基于信息论的汇总质量度量,对Corel图像集的子集测试了该方法。实验结果表明,当涉及领域知识时,可以提高摘要的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号