首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Fast Pattern Classification of Ventricular Arrhythmias Using Graphics Processing Units
【24h】

Fast Pattern Classification of Ventricular Arrhythmias Using Graphics Processing Units

机译:使用图形处理单元对室性心律失常进行快速模式分类

获取原文
获取原文并翻译 | 示例

摘要

Graphics Processing Units (GPUs) can provide remarkable performance gains when compared to CPUs for computationally-intensive applications. In the biomedical area, most of the previous studies are focused on using Neural Networks (NNs) for pattern recognition of biomedical signals. However, the long training times prevent them to be used in real-time. This is critical for the fast detection of Ventricular Arrhythmias (VAs) which may cause cardiac arrest and sudden death. In this paper, we present a parallel implementation of the Back-Propagation (BP) and the Multiple Back-Propagation (MBP) algorithm which allowed significant training speedups. In our proposal, we explicitly specify data parallel computations by defining special functions (kernels); therefore, we can use a fast evaluation strategy for reducing the computational cost without wasting memory resources. The performance of the pattern classification implementation is compared against other reported algorithms.
机译:与计算密集型应用程序的CPU相比,图形处理单元(GPU)可以显着提高性能。在生物医学领域,以前的大多数研究都集中在使用神经网络(NN)进行生物医学信号的模式识别。但是,由于培训时间长,因此无法实时使用它们。这对于快速检测可能导致心脏骤停和猝死的室性心律失常(VA)至关重要。在本文中,我们提出了反向传播(BP)和多重反向传播(MBP)算法的并行实现,从而可以显着提高训练速度。在我们的建议中,我们通过定义特殊功能(内核)来明确指定数据并行计算。因此,我们可以使用快速评估策略来减少计算成本,而不会浪费内存资源。将模式分类实现的性能与其他报告的算法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号