首页> 外文会议>Progress In Electromagnetic Research Symposium >Methods for enhancing the detectability of hydrocarbon in MCSEM
【24h】

Methods for enhancing the detectability of hydrocarbon in MCSEM

机译:增强MCSEM中碳氢化合物可检测性的方法

获取原文
获取外文期刊封面目录资料

摘要

Marine controlled-source electromagnetics (MCSEM) has been used by industry as a geophysical tool for de-risking marine hydrocarbon exploration since early of this century. At present, MCSEM has been applied successfully to identify the presence of hydrocarbon reservoirs in deep water regions. But it is hard to apply MCSEM to shallow water regions, because the air wave interacts with the electromagnetic (EM) signal from reservoirs, which lead to a low signal-to-noise ratio. On the other hand, when it turns to deep water regions with deep-buried reservoirs (4km below sea floor), there is no air wave problem, but the signal of the reservoirs is so weak that one can barely distinguish it from MCSEM equipment noise. In order to mitigate the air wave effects and enhance the intensity of weak signal, we apply synthetic aperture source (SAS) to MCSEM. The concept of synthetic aperture was first introduced to MCSEM by Fan et al. (2010) and SAS construct an extended synthetic source by integrating a series of single sources in a specific configuration to steer the field to some specified offsets by properly weighting the single source fields. In other words, a long synthetic source is constructed by some weighted single sources and the field of long synthetic source is the interference of the fields from all single sources. There are amplitude and phase weights of the single source in SAS field according to Fan et al. (2012), which is the key to achieving significant detectability (reservoir anomalies) of reservoirs in certain model. The SAS field is not only beneficial to interpret the presence of the reservoir, but also help achieve fast and accurate MCSEM inversion. In this study, we design two types of models, which are deep-buried reservoirs in shallow and deep water regions. Then we adopt the mode decomposition method (David and Lucy, 2008) to deduce two potential functions, so the 1D electric and magnetic fields can be numerically computed by using the integral of the Bessel function. Besides, we use the finite element method (FEM) to calculate 2.5D electric and magnetic fields. We apply SAS technique to 1D and 2.5D data on two types of models and the numerical modellings verify the effectiveness of SAS in enhancing the detectability in MCSEM. In addition, we do some research in time-lapsed MCSEM, in order to test the feasibility of MCSEM in reservoir performance monitoring.
机译:自本世纪初以来,海洋控制源电磁学(MCSEM)已被业界用作降低海洋油气勘探风险的地球物理工具。目前,MCSEM已成功应用于识别深水区油气藏的存在。但是很难将MCSEM应用于浅水区域,因为空气波会与来自储层的电磁(EM)信号相互作用,从而导致信噪比较低。另一方面,当它转向具有深埋水库的深水区域(海床以下4公里)时,没有空气波问题,但是水库的信号微弱,几乎无法将其与MCSEM设备噪声区分开来。为了减轻空气波效应并增强微弱信号的强度,我们将合成孔径源(SAS)应用于MCSEM。 Fan等人首先将合成孔径的概念引入了MCSEM。 (2010年)和SAS通过在特定配置中集成一系列单一来源来构建扩展的综合来源,以通过适当地加权单一来源字段来将字段引导至某些指定的偏移量。换句话说,一个长的合成源是由一些加权的单个源构成的,而长的合成源的场是来自所有单个源的场的干扰。根据Fan等人的研究,在SAS领域中存在单个信号源的幅度和相位权重。 (2012年),这是在某些模型中实现储层显着可探测性(储层异常)的关键。 SAS场不仅有利于解释储层的存在,而且有助于实现快速准确的MCSEM反演。在这项研究中,我们设计了两种类型的模型,即浅水区和深水区的深层油藏。然后我们采用模式分解方法(David and Lucy,2008)来推导两个势函数,因此可以使用贝塞尔函数的积分对一维电场和磁场进行数值计算。此外,我们使用有限元方法(FEM)计算2.5D电场和磁场。我们将SAS技术应用于两种类型模型的1D和2.5D数据,数值模型验证了SAS在增强MCSEM可检测性方面的有效性。此外,我们对延时MCSEM进行了一些研究,以检验MCSEM在储层性能监测中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号