首页> 外文会议>Progress in artificial intelligence and pattern recognition >Irony Detection Based on Character Language Model Classifiers
【24h】

Irony Detection Based on Character Language Model Classifiers

机译:基于字符语言模型分类器的反讽检测

获取原文
获取原文并翻译 | 示例

摘要

With the development of social networks and e-commerce, these media became regular spaces for ironic or sarcastic opinions. The detection of ironic opinions can help companies and government to improve products and services. Reliably identifying sarcasm and irony in text can improve the performance of natural language processing techniques applied to opinion mining, sentiment analysis and summarization. There are two main ways to detect irony in texts: features based classification and text classification without features. Most researchers focus their studies on the features creation that characterizes irony. However, there are new approaches that classify irony directly without feature creation. In this paper, we propose a new approach to detect irony by applying character language model classifiers without any feature engineering. We evaluated some algorithms from API LingPipe on Twitter and Amazon datasets including the SemEval-2018 Task 3 dataset for irony detection of English tweets. Several experiments were developed for analyzing the performance of each algorithm per each balanced and unbalanced collections created from the original datasets. The proposal obtained competitive values of accuracy, precision, recall and F1-measure.
机译:随着社交网络和电子商务的发展,这些媒体已成为经常性的讽刺或讽刺见解的空间。具有讽刺意味的观点的发现可以帮助公司和政府改善产品和服务。可靠地识别文本中的讽刺和讽刺可以提高应用于观点挖掘,情感分析和总结的自然语言处理技术的性能。检测文本中具有讽刺意味的主要方法有两种:基于特征的分类和不具有特征的文本分类。大多数研究人员将研究重点放在具有讽刺意味的特征创造上。但是,有一些新方法可以直接对讽刺进行分类,而无需创建特征。在本文中,我们提出了一种通过应用字符语言模型分类器来检测反讽的新方法,而无需进行任何特征工程。我们评估了Twitter和Amazon数据集上API LingPipe上的一些算法,包括SemEval-2018 Task 3数据集,用于讽刺性地检测英语推文。已开发了几个实验,用于分析从原始数据集创建的每个平衡和非平衡集合的每种算法的性能。该提案获得了准确性,精确度,召回率和F1量度的竞争价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号