【24h】

Dual-energy contrast enhanced digital breast tomosynthesis: concept, method and evaluation on phantoms

机译:双能对比增强数字乳腺断层合成:体模的概念,方法和评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present the development of dual-energy Contrast-Enhanced Digital Breast Tomosynthesis (CEDBT). A method to produce background clutter-free slices from a set of low and high-energy projections is introduced, along with a scheme for the determination of the optimal low and high-energy techniques. Our approach consists of a dual-energy recombination of the projections, with an algorithm that has proven its performance in Contrast-Enhanced Digital Mammography (CEDM), followed by an iterative volume reconstruction. The aim is to eliminate the anatomical background clutter and to reconstruct slices where the gray level is proportional to the local iodine volumetric concentration. Optimization of the low and high-energy techniques is performed by minimizing the total glandular dose to reach a target iodine Signal Difference to Noise Ratio (SDNR) in the slices. In this study, we proved that this optimization could be done on the projections, by consideration of the SDNR in the projections instead of the SDNR in the slices, and verified this with phantom measurements. We also discuss some limitations of dual-energy CEDBT, due to the restricted angular range for the projection views, and to the presence of scattered radiation. Experiments on textured phantoms with iodine inserts were conducted to assess the performance of dual-energy CEDBT. Texture contrast was nearly completely removed and the iodine signal was enhanced in the slices.
机译:在本文中,我们介绍了双能量对比增强数字乳房断层扫描(CEDBT)的发展。介绍了一种从一组低能和高能投影中产生无背景杂波的切片的方法,以及一种确定最佳低能和高能技术的方案。我们的方法包括对投影进行双重能量重组,并使用已在对比增强型数字乳房X线照相术(CEDM)中证明其性能的算法,然后进行迭代体积重建。目的是消除解剖背景杂波并重建灰度与局部碘体积浓度成比例的切片。通过最小化总腺体剂量以达到切片中的目标碘信号差噪比(SDNR),可以进行低能和高能技术的优化。在这项研究中,我们证明可以通过考虑投影中的SDNR而不是切片中的SDNR来对投影进行优化,并通过幻像测量验证了这一点。我们还讨论了双能CEDBT的一些局限性,这是由于投影视图的角度范围受限制,并且存在散射辐射。进行了带有碘插入物的质构体模的实验,以评估双能CEDBT的性能。切片中的质地对比几乎完全消除,碘信号增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

联系方式:18141920177 (微信同号)

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号