首页> 外文会议>Photonic fiber and crystal devices: advances in materials and innovations in device applications VIII >Single-platform Si photonic components for mid-infrared sensing and chemical imaging
【24h】

Single-platform Si photonic components for mid-infrared sensing and chemical imaging

机译:用于中红外传感和化学成像的单平台Si光子组件

获取原文
获取原文并翻译 | 示例

摘要

Basic challenges for mid-infrared (MIR) Si photonics are developing of appropriate sources and detectors, detection sensitivity, size minimization and downscaling to a single-platform, spectral tunability. We address such challenges via proper design, modeling and material choice for a series of photonic structures. Our research is done in three steps: modeling, fabrication, characterization. The modeling starts with ellipsometry investigation of Si, Si_3N_4 and SiOx, to estimate the materials' complex dielectric function ε = ε_r +i·ε_i in MIR. The technique showed Si and SiN optical transparency in the range λ=4.5-6.5 μm, and negligible absorption for SiOx, which makes it appropriate for MIR photonics (Figure 1). Figure 2 demonstrates the device concept: MIR source emits electromagnetic field, which is coupled to/from a Si-waveguide (WG) via grating couplers. The WG performs as interaction medium between the propagating field and fluid atop the WG. It results in field attenuation, measured at the output, due to partial absorption by the fluid. To achieve efficient device performance, size, spectral tuning and evaluation of the attenuation, the structures were investigated by means of 3D photonic simulations.The structures were fabricated via the 200-mm-wafer-CMOS technology in Infineon involving deep-UV lithography and Bosch etching. PhC structures were fabricated as holes in a Si-slab with SiOx-filling to avoid residuals from the fluid into the holes, which modifies the photonic band gap and device sensitivity. Figure 3 shows SEM images of the structures. Our paper discusses the design, material characterization, single-platform integration of the source, WG and detector and first experiments with recently fabricated prototypes.
机译:中红外(MIR)硅光子学的基本挑战是开发合适的光源和检测器,检测灵敏度,尺寸最小化以及将其缩小到单平台,光谱可调性。我们通过为一系列光子结构进行适当的设计,建模和材料选择来应对此类挑战。我们的研究分三个步骤进行:建模,制造,表征。建模从对Si,Si_3N_4和SiOx的椭偏研究开始,以估计材料在MIR中的复介电函数ε=ε_r+ i·ε_i。该技术显示Si和SiN的光学透明性在λ= 4.5-6.5μm的范围内,并且对SiOx的吸收可忽略不计,这使其适用于MIR光子学(图1)。图2演示了该设备的概念:MIR源发出电磁场,该电磁场通过光栅耦合器耦合到Si波导(WG),或从Si波导(WG)耦合。 WG充当传播场与WG顶部的流体之间的交互介质。由于流体的部分吸收,会导致在输出处测得的场衰减。为了实现高效的器件性能,尺寸,光谱调谐和衰减评估,通过3D光子仿真研究了结构.Infineon中的200-mm晶圆CMOS技术通过深紫外光刻和博世(Bosch)制造了结构蚀刻。 PhC结构被制成SiOx填充的硅平板中的孔,以避免流体中的残留物进入孔中,从而改变了光子带隙和器件灵敏度。图3显示了结构的SEM图像。我们的文章讨论了设计,材料表征,源,WG和检测器的单平台集成以及最近制作的原型的首次实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号