首页> 外文会议>Pattern recognition >A Stereo Depth Recovery Method Using Layered Representation of the Scene
【24h】

A Stereo Depth Recovery Method Using Layered Representation of the Scene

机译:使用场景的分层表示的立体深度恢复方法

获取原文
获取原文并翻译 | 示例

摘要

Recent progresses in stereo research imply that performance of the disparity estimation depends on the discontinuity localization in the disparity space which is generally predicated on discontinuities in the image intensities. However, these approaches have known limitations at highly textured and occluded regions. In this paper, we propose to employ a layered representation of the scene as an approximation of the scene structure. The layered representation of the scenes was obtained by using partially focused image set of the scene. Although self occlusions are still present in real aperture imaging systems, our approach does not suffer from the occlusion problems as much as stereo and fo-cus/defocus based methods. Our disparity estimation method is based on synchronously optimized two interdependent processes which are regularized with a nonlinear diffusion operator. The amount of diffusion between the neighbors is adjusted adaptively according to information in the layered scene representation and temporal positions of the processes. The system is initialization insensitive and very robust against local minima. In addition, it accurately handles the depth discontinuities. The performance of the presented method has been verified through experiments on real and synthetic scenes.
机译:立体研究的最新进展表明,视差估计的性能取决于视差空间中的不连续性局部化,通常根据图像强度的不连续性来预测。然而,这些方法在高度纹理化和封闭的区域具有已知的局限性。在本文中,我们建议采用场景的分层表示作为场景结构的近似值。通过使用场景的部分聚焦图像集获得场景的分层表示。尽管在实际的光圈成像系统中仍然存在自遮挡,但是我们的方法并没有像基于立体声和焦点/散焦的方法那样受遮挡问题的困扰。我们的视差估计方法基于同步优化的两个相互依赖的过程,这些过程使用非线性扩散算子进行了正则化。邻居之间的扩散量根据分层场景表示中的信息和进程的时间位置进行自适应调整。该系统对初始化不敏感,并且对局部最小值非常健壮。此外,它可以精确处理深度不连续性。通过在真实和合成场景上进行的实验验证了所提出方法的性能。

著录项

  • 来源
    《Pattern recognition》|2009年|322-331|共10页
  • 会议地点 Jena(DE)
  • 作者单位

    GIT Vision Lab, Department of Computer Engineering, Gebze Institute of Technology Gebze, Kocaeli 41400 Turkey;

    GIT Vision Lab, Department of Computer Engineering, Gebze Institute of Technology Gebze, Kocaeli 41400 Turkey;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 模式识别与装置;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号