首页> 外文会议>Pattern recognition and machine intelligence >Classification of Power Quality Disturbances Using GA Based Optimal Feature Selection
【24h】

Classification of Power Quality Disturbances Using GA Based Optimal Feature Selection

机译:基于遗传算法的最优特征选择对电能质量扰动进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel technique for power quality disturbance classification. Wavelet Transform (WT) has been used to extract some useful features of the power system disturbance signal and Gray-coded Genetic Algorithm (GGA) have been used for feature dimension reduction in order to achieve high classification accuracy. Next, a Probabilistic Neural Network (PNN) has been trained using the optimal feature set selected by GGA for automatic Power Quality (PQ) disturbance classification. Considering ten types of PQ disturbances, simulations have been carried out which show that the combination of feature extraction by WT followed by feature reduction using GGA increases the testing accuracy of PNN while classifying PQ signals.
机译:本文提出了一种新的电能质量扰动分类技术。小波变换(WT)已用于提取电力系统扰动信号的一些有用特征,而格雷编码遗传算法(GGA)已用于特征维数减小,以实现较高的分类精度。接下来,使用GGA为自动电能质量(PQ)干扰分类选择的最佳功能集训练了概率神经网络(PNN)。考虑到十种类型的PQ干扰,已经进行了仿真,结果表明,WT的特征提取与GGA的特征缩减相结合,可以在对PQ信号进行分类的同时提高PNN的测试精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号