首页> 外文会议>Pattern Recognition and Machine Intelligence >Efficient Multi-method Rule Learning for Pattern Classification Machine Learning and Data Mining
【24h】

Efficient Multi-method Rule Learning for Pattern Classification Machine Learning and Data Mining

机译:用于模式分类机器学习和数据挖掘的高效多方法规则学习

获取原文
获取原文并翻译 | 示例

摘要

The work presented here focuses on combining multiple classifiers to form single classifier for pattern classification, machine learning for expert system, and data mining tasks. The basis of the combination is that efficient concept learning is possible in many cases when the concepts learned from different approaches are combined to a more efficient concept. The experimental result of the algorithm, EMRL in a representative collection of different domain shows that it performs significantly better than the several state-of-the-art individual classifier, in case of 11 domains out of 25 data sets whereas the state-of-the-art individual classifier performs significantly better than EMRL only in 5 cases.
机译:本文介绍的工作着重于将多个分类器组合在一起以形成用于模式分类的单个分类器,用于专家系统的机器学习以及数据挖掘任务。组合的基础是,在许多情况下,将通过不同方法学习的概念组合为更有效的概念时,可以进行有效的概念学习。 EMRL算法在不同域的代表性集合中的实验结果表明,在25个数据集中有11个域的情况下,EMRL的性能明显优于几个最新的单个分类器仅在5种情况下,最先进的个体分类器的性能明显优于EMRL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号