首页> 外文会议>Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on >Increasing cluster uniqueness in Fuzzy C-Means through affinity measure
【24h】

Increasing cluster uniqueness in Fuzzy C-Means through affinity measure

机译:通过亲和力度量提高模糊C均值中的聚类唯一性

获取原文
获取原文并翻译 | 示例

摘要

Clustering is a widely used technique in data mining application for discovering patterns in large dataset. In this paper the Fuzzy C-Means algorithm is analyzed and found that quality of the resultant cluster is based on the initial seed where it is selected either sequentially or randomly. Fuzzy C-Means uses K-Means clustering approach for the initial operation of clustering and then degree of membership is calculated. Fuzzy C-Means is very similar to the K-Means algorithm and hence in this paper K-Means is outlined and proved how the drawback of K-Means algorithm is rectified through UCAM (Unique Clustering with Affinity Measure) clustering algorithm and then UCAM is refined to give a new view namely Fuzzy-UCAM. Fuzzy C-Means algorithm should be initiated with the number of cluster C and initial seeds. For real time large database it's difficult to predict the number of cluster and initial seeds accurately. In order to overcome this drawback the current paper focused on developing the Fuzzy-UCAM algorithm for clustering without giving initial seed and number of clusters for Fuzzy C-Means. Unique clustering is obtained with the help of affinity measures.
机译:聚类是数据挖掘应用程序中广泛使用的技术,用于发现大型数据集中的模式。在本文中,对模糊C均值算法进行了分析,发现结果簇的质量基于初始种子,该种子是按顺序或随机选择的。 Fuzzy C-Means使用K-Means聚类方法进行聚类的初始操作,然后计算隶属度。模糊C均值与K均值算法非常相似,因此本文概述了K均值并证明了如何通过UCAM(具有亲和力度量的唯一聚类)聚类算法纠正K均值算法的缺点,然后将UCAM应用于改进以给出新的视图,即Fuzzy-UCAM。模糊C均值算法应以簇C的数量和初始种子开始。对于实时大型数据库,很难准确预测群集和初始种子的数量。为了克服这个缺点,当前的论文集中在开发用于聚类的Fuzzy-UCAM算法,而没有给出模糊C-均值的初始种子和聚类数。借助亲和力度量获得唯一的聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号