首页> 外文会议>Parallel and Distributed Processing and Applications; Lecture Notes in Computer Science; 4330 >Adaptive Technique for Automatic Communication Access Pattern Discovery Applied to Data Prefetching in Distributed Applications Using Neural Networks and Stochastic Models
【24h】

Adaptive Technique for Automatic Communication Access Pattern Discovery Applied to Data Prefetching in Distributed Applications Using Neural Networks and Stochastic Models

机译:用于神经网络和随机模型的分布式应用程序中数据预取的自动通信访问模式发现自适应技术

获取原文
获取原文并翻译 | 示例

摘要

The distributed computing performance is usually limited by the data transfer rate and access latency. Techniques such as data caching and prefetching were developed to overcome this limitation. However, such techniques require the knowledge of application behavior in order to be effective. In this sense, we propose new application communication behavior discovery techniques that, by classifying and analyzing application access patterns, is able to predict future application data accesses. The proposed techniques use stochastic methods for application state change prediction and neural networks for access pattern discovery based on execution history, and is evaluated using the NAS Parallel Benchmark suite.
机译:分布式计算性能通常受数据传输速率和访问延迟的限制。开发了诸如数据缓存和预取之类的技术来克服此限制。但是,这样的技术需要应用程序行为的知识才能有效。从这个意义上讲,我们提出了新的应用程序通信行为发现技术,该技术通过对应用程序访问模式进行分类和分析,可以预测未来的应用程序数据访问。所提出的技术使用随机方法进行应用程序状态更改预测,并使用神经网络基于执行历史记录进行访问模式发现,并使用NAS并行基准套件对其进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号