首页> 外文会议>New Frontiers in Applied Artificial Intelligence >An Empirical Investigation of the Use of a Neural Network Committee for Identifying the Streptococcus Pneumoniae Growth Phases in Batch Cultivations
【24h】

An Empirical Investigation of the Use of a Neural Network Committee for Identifying the Streptococcus Pneumoniae Growth Phases in Batch Cultivations

机译:对使用神经网络委员会确定批量培养中肺炎链球菌生长阶段的实证研究

获取原文
获取原文并翻译 | 示例

摘要

Streptococcus pneumoniae is a bacterial pathogen that causes many life-threatening diseases and an effective vaccine against this pathogen is still subject of research. These bacteria grow with low carbon dioxide production, which hinders the application of exhaust gas composition for on-line process monitoring. This work investigates the proposal of a committee of neural networks for identifying Streptococcus pneumoniae growth phases, to be used for on-line state inference. The committee results as well as the accuracy for predicting the culture phases are compared to the results of a unique neural network, for different input variables. The best configuration for the software was: a committee of three NN trained with two input attributes (optical density and mass of alkali solution), 200 epochs of training and log sigmoid as the activation function in the hidden layer as well as in the output layer.
机译:肺炎链球菌是引起许多威胁生命的疾病的细菌病原体,针对这种病原体的有效疫苗仍是研究的主题。这些细菌以低的二氧化碳产生量生长,这阻碍了废气成分在在线过程监控中的应用。这项工作调查了由神经网络委员会提出的用于鉴定肺炎链球菌生长阶段的建议,该建议将用于在线状态推断。对于不同的输入变量,将委员会的结果以及预测培养阶段的准确性与唯一神经网络的结果进行比较。该软件的最佳配置是:由三个NN组成的委员会接受了两个输入属性(光学密度和碱溶液质量)的训练,在隐含层和输出层中有200个时期的训练和对数S型曲线作为激活函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号