首页> 外文会议>Network and parallel computing >Storage Device Performance Prediction with Selective Bagging Classification and Regression Tree
【24h】

Storage Device Performance Prediction with Selective Bagging Classification and Regression Tree

机译:选择性装袋分类和回归树的存储设备性能预测

获取原文
获取原文并翻译 | 示例

摘要

Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment and configuration. Based on bagging ensemble, we proposed an algorithm named selective bagging classification and regression tree (SBCART) to model storage device performance. In addition, we consider the caching effect as a feature in workload characterization. Experiments indicate that caching effect added in feature vector can substantially improve prediction accuracy and SBCART is more precise and more stable compared to CART.
机译:存储设备性能预测是自我管理存储系统和应用程序计划任务(例如数据分配和配置)的关键要素。基于装袋集成,我们提出了一种名为选择性装袋分类和回归树(SBCART)的算法来对存储设备性能进行建模。此外,我们认为缓存效果是工作负载表征中的一个功能。实验表明,添加到特征向量中的缓存效果可以大大提高预测精度,并且与CART相比,SBCART更精确,更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号