首页> 外文会议>Natural language processing and Chinese computing >Improving Chinese Dependency Parsing with Lexical Semantic Features
【24h】

Improving Chinese Dependency Parsing with Lexical Semantic Features

机译:借助词汇语义功能改善中文依赖性解析

获取原文
获取原文并翻译 | 示例

摘要

Lexical semantic information plays an important role in supervised dependency parsing. In this paper, we add lexical semantic features to the feature set of a parser, obtaining improvements on the Penn Chinese Treebank. We extract semantic categories of words from HowNet, and use them as semantic information of words. Moreover, we investigate the method to compute semantic similarity between Chinese compound words, and obtain semantic information of words which did not record in HowNet. Our experiments show that unlabeled attachment scores can increase by 1.29%.
机译:词汇语义信息在监督依赖解析中起着重要作用。在本文中,我们将词法语义特征添加到解析器的特征集中,从而获得对Penn Chinese Treebank的改进。我们从HowNet中提取单词的语义类别,并将其用作单词的语义信息。此外,我们研究了计算中文复合词之间语义相似度的方法,并获得未记录在知网中的词的语义信息。我们的实验表明,未标记的依恋分数可以提高1.29%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号