首页> 外文会议>Multimedia processing, communication and computing applications >Fusion of Texture Features and SBS Method for Classification of Tobacco Leaves for Automatic Harvesting
【24h】

Fusion of Texture Features and SBS Method for Classification of Tobacco Leaves for Automatic Harvesting

机译:融合纹理特征和SBS方法对自动收获烟叶进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a new model to classify tobacco leaves for automatic harvesting using feature level fusion. The CIELAB color space model is used to segment leaves from their background. Texture features are extracted from segmented leaves using Haar wavelets and gray level local texture pattern (GLTP) separately. These extracted features are fused using the concatenation rule. Discriminative texture features are then selected using the sequential backward selection (SBS) method. The k-NN classifier is designed to classify tobacco leaves into three classes viz., unripe, ripe and over-ripe. In order to corroborate the efficacy of the proposed model, we have conducted an experimentation on our own dataset consisting of 1,300 images of tobacco leaves captured in sunny and cloudy lighting conditions in a real tobacco field.
机译:在本文中,我们提出了一种使用特征级融合对烟叶进行自动收获分类的新模型。 CIELAB颜色空间模型用于从树叶背景中分割树叶。分别使用Haar小波和灰度局部纹理图案(GLTP)从分割的叶子中提取纹理特征。这些提取的特征使用串联规则融合。然后使用顺序后向选择(SBS)方法选择可区分的纹理特征。 k-NN分类器旨在将烟叶分为未成熟,成熟和过度成熟三个类别。为了证实所提出模型的有效性,我们对自己的数据集进行了实验,该数据集包含在真实烟草田中在晴天和阴天的光照条件下捕获的1300张烟叶图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号