【24h】

Study on adaptive BTT reentry speed depletion guidance law based on BP neural network

机译:基于BP神经网络的自适应BTT再入速度耗竭制导律研究。

获取原文
获取原文并翻译 | 示例

摘要

Reentry guidance is one of the key technologies in hypersonic vehicle research field. In addition to the constraints on its final position coordinates, the vehicle must also impact the target from a specified direction with high precision. And therefore the adaptability of guidance law is critical to control the velocity of hypersonic vehicle and firing accuracy properly in different surroundings of large airspace. In this paper, a new adaptive guidance strategy based on Back Propagation (BP) neural network for the reentry mission of a generic hypersonic vehicle is presented. Depending on the nicer self-learn ability of BP neural network, the guidance law considers the influence of biggish mis-modeling of aerodynamics, structure error and other initial disturbances on the flight capability of vehicle. Consequently, terminal position accuracy and velocity are guaranteed, while many constraints are satisfied. Numerical simulation results clearly bring out the fact that the proposed reentry guidance law based on BP neural network is rational and effective.
机译:再入导引是高超音速飞行器研究领域的关键技术之一。除了限制其最终位置坐标外,车辆还必须从指定方向高精度地撞击目标。因此,制导律的适应性对于在大空域的不同环境中正确控制高超音速飞行器的速度和射击精度至关重要。本文提出了一种基于反向传播(BP)神经网络的通用超音速飞行器再入任务的自适应制导策略。根据BP神经网络更好的自学习能力,制导律考虑了很大的空气动力学模型错误,结构误差和其他初始扰动对车辆飞行能力的影响。因此,可以保证终端位置的准确性和速度,同时满足许多约束条件。数值模拟结果清楚地表明,所提出的基于BP神经网络的再入导引律是合理有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号