首页> 外文会议>Micromachining and microfabrication process technology XVIII >Deep silicon etch for biology MEMS fabrication: review of process parameters influence versus chip design
【24h】

Deep silicon etch for biology MEMS fabrication: review of process parameters influence versus chip design

机译:用于生物MEMS制造的深硅蚀刻:工艺参数影响与芯片设计的回顾

获取原文
获取原文并翻译 | 示例

摘要

Micro-system for biology is a growing market, especially for micro-fluidic applications (environment and health). Key part for the manufacturing of biology MEMS is the deep silicon etching by plasma to create microstructures. Usual etching process as an alternation of etching and passivation steps is a well-known method for MEMS fabrication, nowadays used in high volume production for devices like sensors and actuators.MEMS for biology applications are very different in design compared to more common micro-systems like accelerometers for instance. Indeed, their design includes on the same chip structures of very diverse size like narrow pillars, large trenches and wide cavities. This makes biology MEMS fabrication very challenging for DRIE, since each type of feature considered individually would require a specific etch process. Furthermore process parameters suited to match specifications on small size features (vertical profile, low sidewall roughness) induce issues and defects on bigger structures (undercut, micro-masking) and vice versa. Thus the process window is constrained leading to trade-offs in process development.In this paper process parameters such as source and platen powers, pressure, etching and passivation gas flows and steps duration were investigated to achieve all requirements. As well interactions between those different factors were characterized at different levels, from individual critical feature up to chip scale and to wafer scale. We will show the plasma process development and tuning to reach all these specifications. We also compared different chambers configurations of our ICP tool (source wafer distance, plasma diffusion) in order to obtain a good combination of hardware and process. With optimized etching we successfully fabricate micro-fluidic devices like micro-pumps.
机译:用于生物学的微系统是一个成长中的市场,尤其是对于微流体应用(环境和健康)而言。制造生物MEMS的关键部分是通过等离子体对硅进行深腐蚀以形成微结构。通常的蚀刻工艺是蚀刻和钝化步骤的交替,是MEMS制造的一种众所周知的方法,如今已用于传感器和致动器等设备的大批量生产。与更常见的微系统相比,生物学应用的MEMS在设计上有很大不同。例如加速度计。实际上,它们的设计在相同的芯片结构上包括大小各异的芯片,例如窄柱,大沟槽和宽腔。这使得生物MEMS制造对于DRIE而言非常具有挑战性,因为单独考虑的每种类型的特征都需要特定的蚀刻工艺。此外,适合于匹配小尺寸特征(垂直轮廓,低侧壁粗糙度)的工艺参数会在较大的结构(底切,微掩膜)上引起问题和缺陷,反之亦然。因此,限制了工艺窗口,从而导致了工艺开发中的折衷。本文研究了工艺参数,例如源和压板功率,压力,蚀刻和钝化气体流量以及步骤持续时间,以达到所有要求。同样,从各个关键特征到芯片规模和晶圆规模,这些不同因素之间的相互作用也具有不同的特征。我们将展示等离子工艺的发展和调整,以达到所有这些规格。我们还比较了ICP工具的不同腔室配置(源晶圆距离,等离子体扩散),以便获得硬件和工艺的良好结合。通过优化刻蚀,我们成功地制造了微流控设备,例如微型泵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号