首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Anion Reactivity in Cation-Disordered Rocksalt Cathode Materials: The Influence of Fluorine Substitution
【24h】

Anion Reactivity in Cation-Disordered Rocksalt Cathode Materials: The Influence of Fluorine Substitution

机译:阳离子无序岩石阴极材料中的阴离子反应性:氟取代的影响

获取原文
获取外文期刊封面目录资料

摘要

The global demand for energy storage technology has created a tremendous need for Li-ion batteries that are lightweight, low cost, and sustainable. Research in the field of lithium-rich cathode materials has led to the development a new class of lithium-excess, cation-disordered rocksalt (DRX) materials. DRX materials display exciting promise as potential cathodes in lithium-ion batteries, owing to their high capacity and resource-friendly composition. Despite these exciting characteristics, these materials suffer from capacity loss over extended cycling due to deleterious side reactions that occur at high potentials, such as O_2 loss. It has been shown that oxygen loss can be suppressed by partial substitution of the lattice oxygen for fluorine, but the role of fluorine in the material remains unclear. In this study, we examine the impact of fluorination on the anionic reactivity of DRX materials. We first use Differential Electrochemical Mass Spectrometry (DEMS) and Titration Mass Spectrometry to map first-charge electrochemistry in DRX cathodes. Comparing the results of this analysis for a DRX oxide and a DRX oxyfluoride, we observe that fluorination increases the transition metal capacity and reduces the oxygen redox capacity. These two effects influence the total material capacity in opposite ways, shifting the balance between transition metal redox and oxygen redox without strongly affecting the total charge capacity. We also adapt an existing technique that couples DEMS with a fluoride-scavenging additive, using it for the first time to show that small amounts of fluorine dissolve from DRX oxyfluorides during charging to high potentials. Finally, we extend these techniques over the first several cycles to study the reversibility of the redox processes and the stability of the materials during cycling. We demonstrate that while oxygen redox remains mostly reversible from cycle to cycle, electrolyte degradation and fluoride dissolution also continue to occur to a diminishing extent during cycling. These conclusions motivate surface passivation to control interfacial reactivity as an important direction to improve cycling stability.
机译:全球对储能技术的需求创造了重量轻,成本低,可持续的锂离子电池的巨大需求。富含锂的阴极材料领域的研究导致了开发新类锂过量,阳离子无序岩石(DRX)材料。由于其高容量和资源友好友好的组合,DRX材料在锂离子电池中显示令人兴奋的承诺作为锂离子电池中的潜在阴极。尽管有这些令人兴奋的特点,但由于在高潜力下发生的有害副反应,这些材料患有扩展循环的容量损失,例如O_2损失。已经表明,通过将晶格氧的部分取代可以抑制氧气损失,但氟在材料中的作用仍不清楚。在这项研究中,我们研究了氟化对DRX材料的阴离子反应性的影响。我们首先使用差分电化学质谱(DEMS)和滴定质谱法在DRX阴极中映射第一电荷电化学。比较DRX氧化物和DRX氧化氧化物的该分析结果,我们观察到氟化增加过渡金属能力并降低氧氧化还原能力。这两种效果以相反的方式影响总材料容量,转化过渡金属氧化还原和氧氧化还原之间的平衡而不会影响总充电容量。我们还调整了一种用氟化物清除添加剂对DEM的现有技术,首次使用它以显示在充电期间从DRX氧氧化物溶解少量氟。最后,我们通过前几个周期扩展这些技术,以研究氧化还原过程的可逆性和循环期间材料的稳定性。我们证明,虽然氧氧化还原在循环到循环中仍然是可逆的,但在循环期间,电解质降解和氟化物溶解也在缩小程度上继续发生。这些结论激发了表面钝化,以控制界面反应性作为提高循环稳定性的重要方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号