首页> 外文会议>International Symposium on Advanced Mechanical Engineering;International Conference on Quality in Research >Numerical Investigation of Heat Transfer and Pressure Loss of Flow Through a Heated Plate Mounted by Perforated Concave Rectangular Winglet Vortex Generators In a Channel
【24h】

Numerical Investigation of Heat Transfer and Pressure Loss of Flow Through a Heated Plate Mounted by Perforated Concave Rectangular Winglet Vortex Generators In a Channel

机译:通道中穿孔凹入矩形翼翼涡流发电机的加热板传热和压力损失的数值研究

获取原文

摘要

The low thermal conductivity of air in fin-and-tube heat exchangers causes high thermal resistance of the air side and results in a low heat transfer rate. This heat transfer rate on the air side can be improved by increasing the heat transfer coefficient. One way to increase the heat transfer coefficient on the air side is to use a vortex generator (VG), which can generate longitudinal vortex (LV) increasing fluid mixing. Therefore, this study aims to numerically analyze heat transfer characteristics and pressure drop of airflow through a heated plate by installing VG in a rectangular channel. Vortex generators (VGs) used in numerical modeling are rectangular winglet pairs (RWPs) and concave rectangular winglet pairs (CRWPs) with 30° attack angle. The number of pairs of VG is varied by one, two, and three with/without holes. The velocity of airflow varies in the range of 0.4-2.0 m/s at intervals of 0.2 m/s. The simulation results show that in the configuration of the three pairs of VG, the decrease in the convection heat transfer coefficient in the case of the perforated CRWP is 3.98% of the CRWP without holes at a velocity of 2.0 m/s. While in the configuration of three pairs of perforated RWP VGs, the decrease in convection heat transfer coefficient is 5.87% from RWP without holes at a velocity of 2.0 m/s. In the configuration of three pairs of perforated VGs at the highest velocity, the decrease in pressure drop in the CRWP and RWP cases is 30.73% and 13.87% of the VGs without holes, respectively.
机译:翅片管热交换器中的空气的低导热率导致空气侧的高热电阻并导致低传热速率。通过增加传热系数可以提高空气侧的该传热速率。增加空气侧传热系数的一种方法是使用涡流发生器(Vg),其可以产生纵向涡流(LV)的流体混合。因此,本研究旨在通过在矩形通道中安装Vg来数值分析通过加热板通过加热板的传热特性和气流压降。在数值建模中使用的涡流发生器(VGS)是矩形小翼对(RWP)和凹入矩形小翼对(CRWP),具有30°攻击角度。 Vg的成对数由一个,两个和三个,其中包含/没有孔。气流的速度在0.2 m / s的间隔时变化在0.4-2.0m / s的范围内。仿真结果表明,在三对Vg的配置中,穿孔CRWP的情况下对流传热系数的降低是3.98%的CRWP,速度为2.0m / s的速度。虽然在三对穿孔的RWP VG的配置中,对流传热系数的降低与RWP的速度为5.87%,速度为2.0m / s。在最高速度下三对穿孔VG的配置中,CRWP和RWP病例的压降降低分别为30.73%和13.87%的VGS,其中VGS没有孔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号