首页> 外文会议>SPE Canada Unconventional Resources Conference >Quantifying Reservoir Permeability in Shale Reservoirs Using After-Closure Analysis of DFIT by Considering Natural Fractures, Fissures, and Microfractures: Field Application
【24h】

Quantifying Reservoir Permeability in Shale Reservoirs Using After-Closure Analysis of DFIT by Considering Natural Fractures, Fissures, and Microfractures: Field Application

机译:通过考虑DFIT通过考虑自然骨折,裂缝和微磨损,量化储层储层中的储层渗透率:现场应用

获取原文

摘要

Natural fractures, fissures, and microfractures are well-known contributors to production performance of shale reservoirs. Complex fracture geometries can be generated by either small-scale fracturing, DFIT, or large volume fracture stimulation, because the activation of pre-existing natural fractures, fissures, and microfractures plays a significant role on generation of induced hydraulic fractures. Therefore, much more attention should be paid to the model development of DFIT complexity. In previous work, Chen et al. (2017a) built a complex fracture-network model for after-closure analysis of DIFT by considering natural fractures. Based on that, this paper introduces a generalized model with random fracture geometry caused by natural fractures, fissures, and microfractures. First, the model flexibility is demonstrated by different complex fracture cases, namely opening-fissure fracture network, tree-like fracture network, radial multiple fracture network, and mutually orthogonal fracture network. It is found that the pressure derivative reaches constant level, no matter what the fracture geometry is. Furthermore, the reservoir permeability of field examples from actual DFIT tests in Marcellus shale reservoir is quantified using the log-log diagnostic plots based on the model solutions. Finally, the Nolte G-function is applied to verify the estimated results. We find that the results from the two methods are consistent. This work primarily focuses on quantifying the reservoir permeability, while in the future more efforts will be made to identify the fracture properties using the proposed model.
机译:自然骨折,裂隙和微折衷是页岩储层生产性能的着名贡献者。复杂的骨折几何形状可以通过小规模的压裂,DFIT或大体积骨折刺激产生,因为对预先存在的自然骨折,裂隙和微乳管的激活作出了重要作用,就产生了诱导的液压骨折。因此,应更多地关注DFIT复杂性的模型开发。在以前的工作中,陈等人。 (2017A)通过考虑自然骨折,为差异分析进行了复杂的骨折网络模型。基于此,本文介绍了具有由天然骨折,裂缝和微磨术引起的随机断裂几何形状的广义模型。首先,通过不同的复杂裂缝案件,即开裂裂缝网络,树状骨折网络,径向多断裂网络和相互正交骨折网络的模型灵活性。结果发现,无论骨折几何形状是什么,压力衍生物都达到恒定水平。此外,使用基于模型解决方案的日志日志诊断图来定量来自Marcellus页岩储层的实际DFIT测试的现场实施例的储层渗透性。最后,应用NOLTE G函数以验证估计结果。我们发现这两种方法的结果一致。这项工作主要侧重于量化储层渗透性,而在未来将使用所提出的模型识别骨折性能的更多努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号