首页> 外文会议>ACS National Meeting Exhibition >INVESTIGATION OF NANOCRYSTAL HETEROSTRUCTURES FOR PHOTOCHEMICAL HYDROGEN PRODUCTION
【24h】

INVESTIGATION OF NANOCRYSTAL HETEROSTRUCTURES FOR PHOTOCHEMICAL HYDROGEN PRODUCTION

机译:用于光化学氢生产的纳米晶异质结构研究

获取原文
获取外文期刊封面目录资料

摘要

The growing need for energy harvesting that has minimal environmental impact has been recognized by scientists and society. One proposed solution is artificial photosynthesis, in which solar energy is converted directly into fuels. The process of solar fuel generation is complicated because it occurs in several steps: absorption of photons and subsequent generation of charges in the light harvesting material, transport of charges to a catalyst, and the catalyzed, multi-electron fuel-generating reaction. A major challenge of producing solar fuels is to control and optimize the rates of these steps. Due to their highly tunable properties, semiconducting nanocrystals (NCs) are promising light harvesting components of artificial photosynthetic systems. Previous work has demonstrated that complexes of CdS NCs and [Fe-Fe]-hydrogenase from Clostridium acetobutylicum produce H2 photochemically with quantum yields up to 20%, which is limited by competition between the rates of electron transfer (ET) to hydrogenase and electron-hole recombination in the NC. The photophysical properties of NCs can be controlled via localization of excited charge carriers in NCs where two different materials are epitaxially attached, known as heterostructures. Here we report a H2 producing system in which ZnSe/CdS or CdSe/CdS dot-in-rod heterostructure NCs are coupled to hydrogenase. Using time-resolved transient absorption spectroscopy, the relationships between NC structure, NC photophysics, and ET are elucidated. Since ET is a key step in efficient harvesting of solar energy by NCs, these fundamental studies will inform the design of future solar energy conversion architectures.
机译:科学家和社会的认可,越来越多的能量收集的需求已经识别了对环境影响最小的影响。一个提出的解决方案是人造光合作用,其中太阳能直接转化为燃料。太阳能燃料产生的过程很复杂,因为它发生在几个步骤中:光子的吸收和随后产生的光收集材料中的电荷,对催化剂的传输,以及催化的多电子燃料产生反应。生产太阳能燃料的主要挑战是控制和优化这些步骤的速率。由于它们的高度可调谐特性,半导体纳米晶体(NCS)是有前途的人造光合体系的光收集部件。以前的作业已经证明Cds NCS和[Fe-Fe] - 乙酰丁基酶的复合物与醋酸梭菌酸梭菌产生的H 2采用量子率高达20%,其受电子转移率与氢酶和电子之间的竞争有限的限制。在NC中的空穴重组。可以通过在NCS中的激发电荷载流子的定位来控制NCS的光物理性质,其中外延附着两种不同的材料,称为异质结构。在这里,我们报告了一种H2生产系统,其中ZnSe / Cds或Cdse / Cds点载体异质结构NCS偶联至氢酶。使用时间分辨的瞬态吸收光谱,阐明了NC结构,NC光学物质和ET之间的关系。由于ET是NCS有效地收获太阳能的关键步骤,因此这些基本研究将以未来的太阳能转换架构设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号