首页> 外文会议>European SOCF SOE Forum >A Model-Based Understanding of Solid-Oxide Electrolysis Cells: From Hydrogen to Syngas Production
【24h】

A Model-Based Understanding of Solid-Oxide Electrolysis Cells: From Hydrogen to Syngas Production

机译:一种基于模型的固体氧化物电解细胞的理解:从氢气到合成气生产

获取原文
获取外文期刊封面目录资料

摘要

High temperature co-electrolysis of H2O and CO2 offers a promising means for syngas production via efficient use of heat and electricity [1, 2]. Some of the considerable advantages to this technology include high reaction kinetics, reduced cell resistance, lowered probability of carbon formation, possibility of coupling with Fischer-Tropsch process for conversion of syngas to liquid fuel/hydrocarbons, effective utilization of heat from exothermic water-gas shift reaction and less complexity at the systems level due to the lack of need for a separate water-gas shift reactor. In this analysis, we report an in-house model to describe the complex fundamental and functional interactions between various internal physico-chemical phenomena of a SOEC. Electrochemistry at the three-phase boundary is modeled using a modified Butler-Volmer (B-V) approach that considers H2 and CO, individually, as electrochemically active species. Also, a 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic H2 electrode chemistry, dusty gas model to account for multi-component diffusion through porous media, and plug flow model for flow through the channels are used. The model is geometry independent. Results pertaining to detailed chemical processes within the cathode, electrochemical behavior and losses during SOEC operation are demonstrated. Reaction flow analysis is performed to study methane production characteristics during co-electrolysis. Simulations are carried out for configurations ranging from simple 1D electrochemical cells to quasi-2D unit cells, to elucidate the effectiveness of the tool for performance and design optimization. The article pertaining to this study is/will be published elsewhere [3].
机译:H2O和CO2的高温协同电解提供了通过有效使用热量和电力的合成气生产的承诺手段[1,2]。该技术的一些具有相当大的优点包括高反应动力学,降低电池抗性,降低碳形成概率,与Fischer-Tropsch的可能性偶联,用于将合成气转化为液体燃料/烃,有效利用来自放热水 - 气体的热量由于缺乏对单独的水 - 气体换体反应器的需要,在系统水平上换档反应和较差的复杂性。在该分析中,我们报告了内部模型,以描述SOEC的各种内部物理化学现象之间的复杂基本和功能相互作用。三相边界处的电化学使用改性的管家 - Volmer(B-V)方法进行建模,该方法将H2和CO单独地作为电化学活性物种。此外,使用用于热催化H2电极化学的42步基本非均相反应机制,尘土飞扬的气体模型通过多孔介质解释多分量扩散,以及用于通过通道的流动模型。该模型是独立的几何形状。证明了在SOEC操作期间的阴极内的详细化学过程有关的结果。进行反应流量分析以研究共同电解过程中的甲烷生产特性。仿真进行配置,从简单的一个维电化学电池准二维单元电池,以阐明对性能和设计优化工具的有效性。与本研究有关的文章是/将在其他地方发表[3]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号