首页> 外文会议>International Technical Meeting of The Institute of Navigation >Design of Extended 'Lock-in Range' Multi-Mode PLL to Simultaneously Track and Demodulate Two GNSS or any Received Signals
【24h】

Design of Extended 'Lock-in Range' Multi-Mode PLL to Simultaneously Track and Demodulate Two GNSS or any Received Signals

机译:扩展“锁定范围”多模PLL的设计,同时跟踪和解调两个GNSS或任何接收信号

获取原文
获取外文期刊封面目录资料

摘要

This paper proposes to process the tracking and demodulation of two wireless signals at the same time in a single channel, via a BandPass Sampling front-end and any antenna arrangement. We propose two new multi-signal-PLL designs that can achieve this. These PLLs can track these two signals without losing lock (or cycle slipping) to any one of them, irrespective of the frequency step/gap between the two input signals frequencies (pull-in range). The Bluetooth (BT) and the GPS-L1CA (GPS) signals are chosen to test our two PLL designs. This is because these two signals are diverse, challenging and used extensively in Smartphones. The design challenge was to continually lock to the GPS signal while BT is communicating using the same receive chain, thus saving power and silicon. This has necessitated the design of a PLL with wide pull-in range and fast switching cycle. Our new multi-mode PLL's design is based on integrating an adaptive Frequency Estimator (FE) into a standard version of the Costas PLL. The FE provides an estimated frequency of the received signal to modify the free-running frequency of the NCO that will enhance the performance of the PLL by increasing its lock-in range. To estimate the frequency, in our first PLL design approach, we used an adaptive IIR notch filter model using the least square method to (1) solve the minimization problem that relates the current received signal with the previous output of the filter, and (2) update the filter parameter that estimate the fundamental frequency. For our second PLL design approach, a numerical differentiation model is used to perform a fourth-order differentiation on the received signal samples in order to calculate the fundamental frequency. Our two Adaptive Multi-Mode PLLs (AMM-PLL) designs have been MATLAB simulated against various test scenarios and can: 1. track multi-signal with up to 10 KHz frequency steps (hold-in range). 2. perform accurate switching between different operation-modes (eg. BT and GPS). 3. have a stable phase-error that reaches 0.05 rad and 0.22 rad based on using IIR notch filter and numerical differentiation models respectively. 4. have a transition time for switching between the two AMM-PLL modes of 38 μsec and 25 μsec in the IIR notch filter and numerical differentiation models respectively. 5. Produce zero BER of the demodulated data of both signals at SNR greater than 12 dB. Our proposed solution, when implemented in Smartphones sensors, will result in considerable power saving, and reduce cost and size of the overall solution.
机译:本文通过带通采样前端和任何天线布置,在单个通道中同时处理两个无线信号的跟踪和解调。我们提出了两个可以实现这一目标的新型多信号PLL设计。这些PLL可以跟踪这两个信号,而不会使它们中的任何一个失去锁定(或循环滑动),而不管两个输入信号频率(拉入范围)之间的频率步长/间隙。选择蓝牙(BT)和GPS-L1CA(GPS)信号以测试我们的两个PLL设计。这是因为这两个信号是多样的,具有挑战性的,并且广泛使用智能手机。设计挑战是持续锁定到GPS信号,而BT正在使用相同的接收链通信,从而节省电力和硅。这需要设计具有宽拉伸范围和快速切换周期的PLL。我们的新型多模PLL的设计基于将自适应频率估计(FE)集成到Costas PLL的标准版本中。 FE提供所接收信号的估计频率,以修改NCO的自由运行频率,这将通过增加其锁定范围来增强PLL的性能。为了估算频率,在我们的第一个PLL设计方法中,我们使用最小二乘法的自适应IIR Notch滤波器模型来解决(1)解决了与过滤器的先前输出相关的最小化问题,并(2 )更新估计基波频率的过滤器参数。对于我们的第二个PLL设计方法,使用数值差异化模型用于在接收信号样本上执行四阶分化,以便计算基频。我们的两个自适应多模PLL(AMM-PLL)设计已经模拟了针对各种测试场景的MATLAB,可以:1。跟踪多达10 kHz频率步骤的多信号(保持范围)。 2.在不同的操作模式(例如,BT和GPS)之间进行准确切换。 3.基于使用IIR Notch滤波器和数值分化模型,具有稳定的相位误差,达到0.05 rad和0.22 rad。 4.分别具有用于在IIR Notch滤波器和数值分化模型中的38μsec和25μsec的两个AMM-PLL模式之间切换的过渡时间。 5.在SNR大于12 dB的SNR处产生两个信号的解调数据的零BER。我们提出的解决方案,在智能手机传感器中实施时,将导致相当大的省电,降低整体解决方案的成本和规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号